Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301850, 2024.
Article in English | MEDLINE | ID: mdl-38669230

ABSTRACT

BACKGROUND: Spatial analysis at different levels can help understand spatial variation of human immunodeficiency virus (HIV) infection, disease drivers, and targeted interventions. Combining spatial analysis and the evaluation of the determinants of the HIV burden in Southern African countries is essential for a better understanding of the disease dynamics in high-burden settings. METHODS: The study countries were selected based on the availability of demographic and health surveys (DHS) and corresponding geographic coordinates. We used multivariable regression to evaluate the determinants of HIV burden and assessed the presence and nature of HIV spatial autocorrelation in six Southern African countries. RESULTS: The overall prevalence of HIV for each country varied between 11.3% in Zambia and 22.4% in South Africa. The HIV prevalence rate was higher among female respondents in all six countries. There were reductions in prevalence estimates in most countries yearly from 2011 to 2020. The hotspot cluster findings show that the major cities in each country are the key sites of high HIV burden. Compared with female respondents, the odds of being HIV positive were lesser among the male respondents. The probability of HIV infection was higher among those who had sexually transmitted infections (STI) in the last 12 months, divorced and widowed individuals, and women aged 25 years and older. CONCLUSIONS: Our research findings show that analysis of survey data could provide reasonable estimates of the wide-ranging spatial structure of the HIV epidemic in Southern African countries. Key determinants such as individuals who are divorced, middle-aged women, and people who recently treated STIs, should be the focus of HIV prevention and control interventions. The spatial distribution of high-burden areas for HIV in the selected countries was more pronounced in the major cities. Interventions should also be focused on locations identified as hotspot clusters.


Subject(s)
HIV Infections , Humans , Female , HIV Infections/epidemiology , Male , Adult , Prevalence , Adolescent , Young Adult , Middle Aged , South Africa/epidemiology , Spatial Analysis , Zambia/epidemiology , Health Surveys , Africa, Southern/epidemiology
2.
BMC Public Health ; 24(1): 472, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355444

ABSTRACT

BACKGROUND: Vaccine homophily describes non-heterogeneous vaccine uptake within contact networks. This study was performed to determine observable patterns of vaccine homophily, as well as the impact of vaccine homophily on disease transmission within and between vaccination groups under conditions of high and low vaccine efficacy. METHODS: Residents of British Columbia, Canada, aged ≥ 16 years, were recruited via online advertisements between February and March 2022, and provided information about vaccination status, perceived vaccination status of household and non-household contacts, compliance with COVID-19 prevention guidelines, and history of COVID-19. A deterministic mathematical model was used to assess transmission dynamics between vaccine status groups under conditions of high and low vaccine efficacy. RESULTS: Vaccine homophily was observed among those with 0, 2, or 3 doses of the vaccine. Greater homophily was observed among those who had more doses of the vaccine (p < 0.0001). Those with fewer vaccine doses had larger contact networks (p < 0.0001), were more likely to report prior COVID-19 (p < 0.0001), and reported lower compliance with COVID-19 prevention guidelines (p < 0.0001). Mathematical modelling showed that vaccine homophily plays a considerable role in epidemic growth under conditions of high and low vaccine efficacy. Furthermore, vaccine homophily contributes to a high force of infection among unvaccinated individuals under conditions of high vaccine efficacy, as well as to an elevated force of infection from unvaccinated to suboptimally vaccinated individuals under conditions of low vaccine efficacy. INTERPRETATION: The uneven uptake of COVID-19 vaccines and the nature of the contact network in the population play important roles in shaping COVID-19 transmission dynamics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Pandemics/prevention & control , Vaccination , British Columbia/epidemiology
3.
Epidemics ; 45: 100720, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944405

ABSTRACT

BACKGROUND: Outbreak response modelling often involves collaboration among academics, and experts from governmental and non-governmental organizations. We conducted a systematic review of modelling studies on human vaccine-preventable disease (VPD) outbreaks to identify patterns in modelling practices between two collaboration types. We complemented this with a mini comparison of foot-and-mouth disease (FMD), a veterinary disease that is controllable by vaccination. METHODS: We searched three databases for modelling studies that assessed the impact of an outbreak response. We extracted data on author affiliation type (academic institution, governmental, and non-governmental organizations), location studied, and whether at least one author was affiliated to the studied location. We also extracted the outcomes and interventions studied, and model characteristics. Included studies were grouped into two collaboration types: purely academic (papers with only academic affiliations), and mixed (all other combinations) to help investigate differences in modelling patterns between collaboration types in the human disease literature and overall differences with FMD collaboration practices. RESULTS: Human VPDs formed 227 of 252 included studies. Purely academic collaborations dominated the human disease studies (56%). Notably, mixed collaborations increased in the last seven years (2013-2019). Most studies had an author affiliated to an institution in the country studied (75.2%) but this was more likely among the mixed collaborations. Contrasted to the human VPDs, mixed collaborations dominated the FMD literature (56%). Furthermore, FMD studies more often had an author with an affiliation to the country studied (92%) and used complex model design, including stochasticity, and model parametrization and validation. CONCLUSION: The increase in mixed collaboration studies over the past seven years could suggest an increase in the uptake of modelling for outbreak response decision-making. We encourage more mixed collaborations between academic and non-academic institutions and the involvement of locally affiliated authors to help ensure that the studies suit local contexts.


Subject(s)
COVID-19 , Foot-and-Mouth Disease , Vaccine-Preventable Diseases , Animals , Humans , COVID-19/epidemiology , Vaccine-Preventable Diseases/epidemiology , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control
4.
J Theor Biol ; 559: 111368, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36436733

ABSTRACT

COVID-19 remains a major public health concern, with large resurgences even where there has been widespread uptake of vaccines. Waning immunity and the emergence of new variants will shape the long-term burden and dynamics of COVID-19. We explore the transition to the endemic state, and the endemic incidence in British Columbia (BC), Canada and South Africa (SA), to compare low and high vaccination coverage settings with differing public health policies, using a combination of modelling approaches. We compare reopening (relaxation of public health measures) gradually and rapidly as well as at different vaccination levels. We examine how the eventual endemic state depends on the duration of immunity, the rate of importations, the efficacy of vaccines and the transmissibility. These depend on the evolution of the virus, which continues to undergo selection. Slower reopening leads to a lower peak level of incidence and fewer overall infections in the wave following reopening: as much as a 60% lower peak and a 10% lower total in some illustrative simulations; under realistic parameters, reopening when 70% of the population is vaccinated leads to a large resurgence in cases. The long-term endemic behaviour may stabilize as late as January 2023, with further waves of high incidence occurring depending on the transmissibility of the prevalent variant, duration of immunity, and antigenic drift. We find that long term endemic levels are not necessarily lower than current pandemic levels: in a population of 100,000 with representative parameter settings (Reproduction number 5, 1-year duration of immunity, vaccine efficacy at 80% and importations at 3 cases per 100K per day) there are over 100 daily incident cases in the model. Predicted prevalence at endemicity has increased more than twofold after the emergence and spread of Omicron. The consequent burden on health care systems depends on the severity of infection in immunized or previously infected individuals.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Biological Transport , Public Health
5.
Bull Math Biol ; 83(9): 94, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34337694

ABSTRACT

As insect populations decline, due to climate change and other environmental disruptions, there has been an increased interest in understanding extinction probabilities. Generally, the life cycle of insects occurs in well-defined stages: when counting insects, questions naturally arise about which life stage to count. Using tsetse flies (vectors of trypanosomiasis) as a case study, we develop a model that works when different life stages are counted. Previous branching process models for tsetse populations only explicitly represent newly emerged adult female tsetse and use that subpopulation to keep track of population growth/decline. Here, we directly model other life stages. We analyse reproduction numbers and extinction probabilities and show that several previous models used for estimating extinction probabilities for tsetse populations are special cases of the current model. We confirm that the reproduction number is the same regardless of which life stage is counted, and show how the extinction probability depends on which life stage we start from. We demonstrate, and provide a biological explanation for, a simple relationship between extinction probabilities for the different life stages, based on the probability of recruitment between stages. These results offer insights into insect population dynamics and provide tools that will help with more detailed models of tsetse populations. Population dynamics studies of insects should be clear about life stages and counting points.


Subject(s)
Tsetse Flies , Animals , Climate Change , Female , Mathematical Concepts , Population Dynamics , Probability
6.
BMJ Open ; 10(10): e036172, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020081

ABSTRACT

INTRODUCTION: Outbreaks of vaccine-preventable diseases continue to threaten public health, despite the proven effectiveness of vaccines. Interventions such as vaccination, social distancing and palliative care are usually implemented, either individually or in combination, to control these outbreaks. Mathematical models are often used to assess the impact of these interventions and for supporting outbreak response decision making. The objectives of this systematic review, which covers all human vaccine-preventable diseases, are to determine the relative impact of vaccination compared with other outbreak interventions, and to ascertain the temporal trends in the use of modelling in outbreak response decision making. We will also identify gaps and opportunities for future research through a comparison with the foot-and-mouth disease outbreak response modelling literature, which has good examples of the use of modelling to inform outbreak response intervention decision making. METHODS AND ANALYSIS: We searched on PubMed, Scopus, Web of Science, Google Scholar and some preprint servers from the start of indexing to 15 January 2020. Inclusion: modelling studies, published in English, that use a mechanistic approach to evaluate the impact of an outbreak intervention. Exclusion: reviews, and studies that do not describe or use mechanistic models or do not describe an outbreak. We will extract data from the included studies such as their objectives, model types and composition, and conclusions on the impact of the intervention. We will ascertain the impact of models on outbreak response decision making through visualisation of time trends in the use of the models. We will also present our results in narrative style. ETHICS AND DISSEMINATION: This systematic review will not require any ethics approval since it only involves scientific articles. The review will be disseminated in a peer-reviewed journal and at various conferences fitting its scope. PROSPERO REGISTRATION NUMBER: CRD42020160803.


Subject(s)
Foot-and-Mouth Disease , Vaccine-Preventable Diseases , Animals , Disease Outbreaks/prevention & control , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Humans , Livestock , Research Design , Systematic Reviews as Topic
7.
PLoS Negl Trop Dis ; 14(5): e0007769, 2020 05.
Article in English | MEDLINE | ID: mdl-32379749

ABSTRACT

Significant reductions in populations of tsetse (Glossina spp) in parts of Zimbabwe have been attributed to increases in temperature over recent decades. Sustained increases in temperature might lead to local extinctions of tsetse populations. Extinction probabilities for tsetse populations have not so far been estimated as a function of temperature. We develop a time-homogeneous branching process model for situations where tsetse live at different levels of fixed temperature. We derive a probability distribution pk(T) for the number of female offspring an adult female tsetse is expected to produce in her lifetime, as a function of the fixed temperature at which she is living. We show that pk(T) can be expressed as a geometric series: its generating function is therefore a fractional linear type. We obtain expressions for the extinction probability, reproduction number, time to extinction and growth rates. The results are valid for all tsetse, but detailed effects of temperature will vary between species. No G. m. morsitans population can escape extinction if subjected, for extended periods, to temperatures outside the range 16°C-32°C. Extinction probability increases more rapidly as temperatures approach and exceed the upper and lower limits. If the number of females is large enough, the population can still survive even at high temperatures (28°C-31°C). Small decreases or increases in constant temperature in the neighbourhoods of 16°C and 31°C, respectively, can drive tsetse populations to extinction. Further study is needed to estimate extinction probabilities for tsetse populations in field situations where temperatures vary continuously.


Subject(s)
Ecosystem , Tsetse Flies/growth & development , Animals , Female , Male , Population Dynamics , Temperature , Zimbabwe
8.
PLoS Negl Trop Dis ; 14(5): e0007854, 2020 05.
Article in English | MEDLINE | ID: mdl-32392220

ABSTRACT

BACKGROUND: A relatively simple life history allows us to derive an expression for the extinction probability of populations of tsetse, vectors of African sleeping sickness. We present the uncertainty and sensitivity analysis of the extinction probability, to offer key insights into factors affecting the control or eradication of tsetse populations. METHODS: We represent tsetse population growth as a branching process, and derive closed form estimates of population extinction from that model. Statistical and mathematical techniques are used to analyse the uncertainties in estimating extinction probability, and the sensitivity of the extinction probability to changes in input parameters representing the natural life history and vital dynamics of tsetse populations. RESULTS: For fixed values of input parameters, the sensitivity of extinction probability depends on the baseline parameter values. Extinction probability is most sensitive to the probability that a female is inseminated by a fertile male when daily pupal mortality is low, whereas the extinction probability is most sensitive to daily mortality rate for adult females when daily pupal mortality, and extinction probabilities, are high. Global uncertainty and sensitivity analysis show that daily mortality rate for adult females has the highest impact on the extinction probability. CONCLUSIONS: The high correlation between extinction probability and daily female adult mortality gives a strong argument that control techniques which increase daily female adult mortality may be the single most effective means of ensuring eradication of tsetse population.


Subject(s)
Tsetse Flies/physiology , Animals , Female , Male , Models, Biological , Population Dynamics , Probability , Temperature , Tsetse Flies/growth & development
9.
PLoS Negl Trop Dis ; 13(4): e0006973, 2019 04.
Article in English | MEDLINE | ID: mdl-30964873

ABSTRACT

A published study used a stochastic branching process to derive equations for the mean and variance of the probability of, and time to, extinction in population of tsetse flies (Glossina spp) as a function of adult and pupal mortality, and the probabilities that a female is inseminated by a fertile male. The original derivation was partially heuristic and provided no proofs for inductive results. We provide these proofs, together with a more compact way of reaching the same results. We also show that, while the published equations hold good for the case where tsetse produce male and female offspring in equal proportion, a different solution is required for the more general case where the probability (ß) that an offspring is female lies anywhere in the interval (0, 1). We confirm previous results obtained for the special case where ß = 0.5 and show that extinction probability is at a minimum for ß > 0.5 by an amount that increases with increasing adult female mortality. Sensitivity analysis showed that the extinction probability was affected most by changes in adult female mortality, followed by the rate of production of pupae. Because females only produce a single offspring approximately every 10 days, imposing a death rate of greater than about 3.5% per day will ensure the eradication of any tsetse population. These mortality levels can be achieved for some species using insecticide-treated targets or cattle-providing thereby a simple, effective and cost-effective method of controlling and eradicating tsetse, and also human and animal trypanosomiasis. Our results are of further interest in the modern situation where increases in temperature are seeing the real possibility that tsetse will go extinct in some areas, without the need for intervention, but have an increased chance of surviving in other areas where they were previously unsustainable due to low temperatures.


Subject(s)
Insect Control/methods , Models, Statistical , Tsetse Flies/physiology , Animals , Female , Male , Population Density , Probability , Pupa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...