Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 44(9): e2200958, 2023 May.
Article in English | MEDLINE | ID: mdl-36912742

ABSTRACT

Phase behavior modulation of liquid crystalline molecules can be addressed by structural modification at molecular level. Starting from a rigid rod-like core reduction of the symmetry or increase of the steric hindrance by different substituents generally reduces the clearing temperature. Similar approaches can be explored to modulate the properties of liquid crystalline networks (LCNs)-shape-changing materials employed as actuators in many fields. Depending on the application, the polymer properties have to be adjusted in terms of force developed under stimuli, kinetics of actuation, elasticity, and resistance to specific loads. In this work, the crosslinker modification at molecular level is explored towards the optimization of LCN properties as light-responsive artificial muscles. The synthesis and characterization of photopolymerizable crosslinkers, bearing different lateral groups on the aromatic core is reported. Such molecules are able to strongly modulate the material mechanical properties, such as kinetics and maximum tension under light actuation, opening up to interesting materials for biomedical applications.


Subject(s)
Liquid Crystals , Polymers , Molecular Structure , Polymers/chemistry , Liquid Crystals/chemistry , Mechanical Phenomena , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL
...