Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 113: 21-28, 2023 10.
Article in English | MEDLINE | ID: mdl-37369339

ABSTRACT

Stress and depression are increasingly recognized as cerebrovascular risk factors, including among high stress populations such as people living with HIV infection (PLWH). Stress may contribute to stroke risk through activation of neural inflammatory pathways. In this cross-sectional study, we examined the relationships between stress, systemic and arterial inflammation, and metabolic activity in stress-related brain regions on 18F-fluorodeoxyglucose (FDG)-PET in PLWH. Participants were recruited from a parent trial evaluating the impact of alirocumab on radiologic markers of cardiovascular risk in people with treated HIV infection. We administered a stress battery to assess different forms of psychological stress, specifying the Perceived Stress Scale as the primary stress measure, and quantified plasma markers of inflammation and immune activation. Participants underwent FDG-PET of the brain, neck, and chest. Age- and sex-matched control participants without HIV infection were selected for brain FDG-PET comparisons. Among PLWH, we used nonparametric pairwise correlations, partial correlations, and linear regression to investigate the association between stress and 1) systemic inflammation; 2) atherosclerotic inflammation on FDG-PET; and metabolic activity in 3) brain regions in which glucose metabolism differed significantly by HIV serostatus; and 4) in a priori defined stress-responsive regions of interest (ROI) and stress-related neural network activity (i.e., ratio of amygdala to ventromedial prefrontal cortex or temporal lobe activity). We studied 37 PLWH (mean age 60 years, 97% men) and 29 control participants without HIV (mean age 62 years, 97% men). Among PLWH, stress was significantly correlated with systemic inflammation (r = 0.33, p = 0.041) and arterial inflammation in the carotid (r = 0.41, p = 0.023) independent of age, race/ethnicity, traditional vascular risk factors and health-related behaviors. In voxel-wise analyses, metabolic activity in a cluster corresponding to the anterior medial temporal lobes, including the bilateral amygdalae, was significantly lower in PLWH compared with controls. However, we did not find a significant positive relationship between stress and this cluster of decreased metabolic activity in PLWH, a priori defined stress-responsive ROI, or stress-related neural network activity. In conclusion, psychological stress was associated with systemic and carotid arterial inflammation in this group of PLWH with treated infection. These data provide preliminary evidence for a link between psychological stress, inflammation, and atherosclerosis as potential drivers of excess cerebrovascular risk among PLWH.


Subject(s)
Arteritis , Atherosclerosis , HIV Infections , Male , Humans , Middle Aged , Female , HIV Infections/complications , HIV Infections/drug therapy , Fluorodeoxyglucose F18 , Cross-Sectional Studies , Inflammation/complications , Arteritis/complications , Atherosclerosis/metabolism , Stress, Psychological
2.
J Infect Dis ; 228(5): 542-554, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37166076

ABSTRACT

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (postacute sequelae of coronavirus disease 2019 [COVID-19; PASC] or "long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity. METHODS: We conducted cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults >1 year after SARS-CoV-2 infection, compared those with and those without symptoms, and correlated findings with previously measured biomarkers. RESULTS: Sixty participants (median age, 53 years; 42% female; 87% nonhospitalized; median 17.6 months after infection) were studied. At CPET, 18/37 (49%) with symptoms had reduced exercise capacity (<85% predicted), compared with 3/19 (16%) without symptoms (P = .02). The adjusted peak oxygen consumption (VO2) was 5.2 mL/kg/min lower (95% confidence interval, 2.1-8.3; P = .001) or 16.9% lower percent predicted (4.3%-29.6%; P = .02) among those with symptoms. Chronotropic incompetence was common. Inflammatory markers and antibody levels early in PASC were negatively correlated with peak VO2. Late-gadolinium enhancement on CMR and arrhythmias were absent. CONCLUSIONS: Cardiopulmonary symptoms >1 year after COVID-19 were associated with reduced exercise capacity, which was associated with earlier inflammatory markers. Chronotropic incompetence may explain exercise intolerance among some with "long COVID."


Subject(s)
COVID-19 , Exercise Tolerance , Female , Male , Humans , Contrast Media , Heart Rate , SARS-CoV-2 , Gadolinium , Inflammation , Phenotype
3.
medRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-35677073

ABSTRACT

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS: We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS: Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS: We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points: Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.

4.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35389890

ABSTRACT

Shortness of breath, chest pain, and palpitations occur as postacute sequelae of COVID-19, but whether symptoms are associated with echocardiographic abnormalities, cardiac biomarkers, or markers of systemic inflammation remains unknown. In a cross-sectional analysis, we assessed symptoms, performed echocardiograms, and measured biomarkers among adults more than 8 weeks after confirmed SARS-CoV-2 infection. We modeled associations between symptoms and baseline characteristics, echocardiographic findings, and biomarkers using logistic regression. We enrolled 102 participants at a median of 7.2 months following COVID-19 onset; 47 individuals reported dyspnea, chest pain, or palpitations. Median age was 52 years, and 41% of participants were women. Female sex, hospitalization, IgG antibody against SARS-CoV-2 receptor binding domain, and C-reactive protein were associated with symptoms. Regarding echocardiographic findings, 4 of 47 participants (9%) with symptoms had pericardial effusions compared with 0 of 55 participants without symptoms; those with effusions had a median of 4 symptoms compared with a median of 1 symptom in those without effusions. There was no strong evidence for a relationship between symptoms and echocardiographic functional parameters or other biomarkers. Among adults more than 8 weeks after SARS-CoV-2 infection, SARS-CoV-2 RBD antibodies, markers of inflammation, and, possibly, pericardial effusions are associated with cardiopulmonary symptoms. Investigation into inflammation as a mechanism underlying postacute sequelae of COVID-19 is warranted.


Subject(s)
COVID-19 , Pericardial Effusion , Adult , Antibodies, Viral , Biomarkers , COVID-19/complications , COVID-19/diagnostic imaging , Chest Pain/etiology , Cross-Sectional Studies , Echocardiography , Female , Humans , Inflammation , Male , Middle Aged , SARS-CoV-2
5.
J Virus Erad ; 6(1): 19-26, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32175087

ABSTRACT

OBJECTIVES: The aim of this study was to assess soluble CD30 (sCD30), a protein that colocalises with HIV-1 RNA and DNA in lymphoid cells and tissues, in cerebrospinal fluid (CSF) as a marker of HIV-1 infection in the central nervous system (CNS). METHODS: This was a cross-sectional study using archived samples from two clinical cohorts. Soluble CD30 concentrations were measured in paired CSF and plasma from untreated viraemic individuals (n=52), individuals on suppressive antiretroviral therapy (ART) (n=33), HIV-1 controllers (n=10), participants with CSF HIV-1 'escape' (n=11) and controls without HIV-1 infection (n=16). Nonparametric tests were used to compare levels across groups and evaluate correlations with HIV-1 RNA, CSF neurofilament light chain protein (NFL) and neopterin. RESULTS: Compared with controls (median 30 ng/mL, interquartile range [IRQ] 23-50), plasma sCD30 levels were elevated in viraemic participants (75 ng/mL, 52-116; P<0.001), but not in those on suppressive ART (38 ng/mL, 32-62). In contrast, CSF sCD30 levels were elevated in ART-suppressed individuals (34 ng/mL, 19-46; P=0.001) and in those with CSF 'escape' (33 ng/mL, 27-40; P=0.004) compared with controls (18 ng/mL, 11-23), but not in untreated viraemic individuals. No association was observed between CSF sCD30 and plasma HIV-1 RNA, concurrent or nadir CD4+ T cell count, duration of infection or plasma sCD30. CSF sCD30 correlated with CSF NFL (r=0.34, P=0.001). CONCLUSIONS: In contrast to plasma, sCD30 levels are elevated in the CSF of individuals with HIV-1 infection who are on suppressive ART. Elevated levels of sCD30 in the CSF may be an indicator of persistent CNS HIV-1 infection, although the mechanism underlying this elevation warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...