Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(38): eabo2621, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36129986

ABSTRACT

Melting is a common and well-studied phenomenon that still reveals new facets when triggered by laser excitation and probed with ultrafast electron diffraction. Recent experimental evidence of anomalously slow nanosecond-scale melting of thin gold films irradiated by femtosecond laser pulses motivates computational efforts aimed at revealing the underlying mechanisms of melting. Atomistic simulations reveal that a combined effect of lattice superheating and relaxation of laser-induced stresses ensures the dominance of the homogeneous melting mechanism at all energies down to the melting threshold and keeps the time scale of melting within ~100 picoseconds. The much longer melting times and the prominent contribution of heterogeneous melting inferred from the experiments cannot be reconciled with the atomistic simulations by any reasonable variation of the electron-phonon coupling strength, thus suggesting the need for further coordinated experimental and theoretical efforts aimed at addressing the mechanisms and kinetics of laser-induced melting in the vicinity of melting threshold.

2.
ACS Appl Mater Interfaces ; 11(45): 42288-42297, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31657889

ABSTRACT

As the demand for electric vehicles (EVs) and autonomous vehicles (AVs) rapidly grows, lower-cost, lighter, and stronger carbon fibers (CFs) are urgently needed to respond to consumers' call for greater EV traveling range and stronger safety structures for AVs. Converting polymeric precursors to CFs requires a complex set of thermochemical processes; a systematic understanding of each parameter in fiber conversion is still, to a large extent, lacking. Here, we demonstrate the effect of carbonization temperature on carbon ring structure formation by combining atomistic/microscale simulations and experimental validation. Experimental testing, as predicted by simulations, exhibited that the strength and ductility of PAN CFs decreased, whereas the Young's modulus increased with increasing carbonization temperature. Our simulations unveiled that high carbonization temperature accelerated the kinetics of graphitic phase nucleation and growth, leading to the decrease in strength and ductility but increase in modulus. The methodology presented herein using combined atomistic/microscale simulations and experimental validation lays a firm foundation for further innovation in CF manufacturing and low-cost alternative precursor development.

SELECTION OF CITATIONS
SEARCH DETAIL
...