Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20514, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34654831

ABSTRACT

In this study, a core-shell magnetic metal organic framework (MOF) catalyst was introduced based on Fe3O4 magnetic nanoparticles (MNPs) and copper organic frameworks. In this catalyst, Fe3O4 MNPs have been coated with MOFs in which copper was the inorganic nodes and 1,3,5-benzenetricarboxylic acid was the organic linkers. Then, the core-shell structures and catalytic efficiency have been confirmed properly and completely with various analyses such as FT-IR, TEM, SEM, TEM mapping, SEM mapping, EDX, PXRD, TGA, ICP and VSM. The Cu moieties in MOF and shell structures can catalyze the synthesis of 1,2,3-triazole derivatives with good to excellent yields in the presence of water as a green solvent. Moreover, this catalyst showed the high reusability due to the super paramagnetic properties.

2.
J Colloid Interface Sci ; 505: 956-963, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28687033

ABSTRACT

A new propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (PMO-ICS-Pr-SO3H) was prepared and shown to be a highly efficient recyclable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives in good to excellent yields from indole and different aldehydes in EtOH under mild reaction conditions in short reaction times. Moreover, the nanoporous catalyst was recovered and reused at least four times without significant decrease in its catalytic activity. The PMO-ICS-Pr-SO3H catalyst was characterizred by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry analysis (TGA) and N2 adsorption-desorption isotherms techniques as well as field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) spectroscopy. Compared to the classical methodologies, this method illustrated significant advantages including low loading of the catalyst, high to excellent yields, short reaction times, avoiding the use of toxic transition metals or reactive reagents for modification of the catalytic activity, easy separation and purification of the products, and reusability of the catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...