Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1818, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245614

ABSTRACT

This study aimed to design an end-to-end deep learning model for estimating the value of fractional flow reserve (FFR) using angiography images to classify left anterior descending (LAD) branch angiography images with average stenosis between 50 and 70% into two categories: FFR > 80 and FFR ≤ 80. In this study 3625 images were extracted from 41 patients' angiography films. Nine pre-trained convolutional neural networks (CNN), including DenseNet121, InceptionResNetV2, VGG16, VGG19, ResNet50V2, Xception, MobileNetV3Large, DenseNet201, and DenseNet169, were used to extract the features of images. DenseNet169 indicated higher performance compared to other networks. AUC, Accuracy, Sensitivity, Specificity, Precision, and F1-score of the proposed DenseNet169 network were 0.81, 0.81, 0.86, 0.75, 0.82, and 0.84, respectively. The deep learning-based method proposed in this study can non-invasively and consistently estimate FFR from angiographic images, offering significant clinical potential for diagnosing and treating coronary artery disease by combining anatomical and physiological parameters.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Deep Learning , Fractional Flow Reserve, Myocardial , Humans , Coronary Stenosis/diagnosis , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Predictive Value of Tests , Coronary Artery Disease/diagnostic imaging , Severity of Illness Index , Retrospective Studies
2.
Iran J Public Health ; 49(5): 923-930, 2020 May.
Article in English | MEDLINE | ID: mdl-32953680

ABSTRACT

BACKGROUND: The prevalence of Acute Myocardial Infarction (AMI) varies from region to region caused by seasonal climate changes and temperature variation. This study aimed to assess the relationship between changing meteorological conditions and incidence of AMI in Iran. METHODS: This retrospective prevalence study was based on medical records of the heart center of Mazandaran Province on all patients diagnosed with AMI in Mazandaran, northern Iran between 2013 and 2015. Patients' sex and the day, month, year and time of hospital admission were extracted from patients' records. Moreover, the meteorological reports were gathered. RESULTS: A statistically significant difference was found between the distributions of AMI cases across 12 months of the year (P < 0.01). Fuzzy clustering analysis using 16 different climatic variables showed that March, April, and May were in the same cluster together. The other 9 months were in different clusters. CONCLUSION: Significant increase in AMI was seen in March, April and May (cold to hot weather).

3.
Health Promot Perspect ; 9(2): 123-130, 2019.
Article in English | MEDLINE | ID: mdl-31249799

ABSTRACT

Background: Meteorological parameters and seasonal changes can play an important role in the occurrence of acute coronary syndrome (ACS). However, there is almost no evidence on a national level to suggest the associations between these variables and ACS in Iran. We aim to identify the meteorological parameters and seasonal changes in relationship to ACS. Methods: This retrospective cross-sectional study was conducted between 03/19/2015 to 03/18/2016 and used documents and records of patients with ACS in Mazandaran ProvinceHeart Center, Iran. The following definitive diagnostic criteria for ACS were used: (1) existence of cardiac enzymes (CK or CK-MB) above the normal range; (2) Greater than 1 mm ST-segment elevation or depression; (3) abnormal Q waves; and (4) manifestation of troponin enzyme in the blood. Data were collected daily, such as temperature (Celsius) changes, wind speed and its direction, rainfall, daily evaporation rate; number of sunny days, and relative humidity were provided by the Meteorological Organization of Iran. Results: A sample of 2,054 patients with ACS were recruited. The results indicated the highest ACS events from March to May. Generally, wind speed (18 PM) [IRR = 1.051 (95% CI: 1.019 to1.083), P=0.001], daily evaporation [IRR = 1.039 (95% CI: 1.003 to 1.077), P=0.032], daily maximum (P<0.001) and minimum (P=0.003) relative humidity was positively correlated withACS events. Also, negatively correlated variables were daily relative humidity (18 PM) [IRR =0.985 (95% CI: 0.978 to 0.992), P<0.001], and daily minimum temperature [IRR = 0.942 (95%CI: 0.927 to 0.958), P<0.001]. Conclusion: Climate changes were found to be significantly associated with ACS; especially from cold weather to hot weather in March, April and May. Further research is needed to fully understand the specific conditions and cold exposures.

SELECTION OF CITATIONS
SEARCH DETAIL
...