Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Radioanal Nucl Chem ; 311(1): 877-886, 2017.
Article in English | MEDLINE | ID: mdl-28111490

ABSTRACT

Characterization of cellulose acetate butyrate (CAB) thin films with 17, 35 and 52 wt% butyryl is carried out to select the most suitable matrix material for the U and Pu containing large-sized dried spike reference material. The virgin CAB samples were aged by vibrations, heat, humidity, UV light and X-rays. Characterization was done by thermo-analytical techniques, gel permeation chromatography, mechanical tests and via Rayleigh and Compton scattering. The results show that CAB with lower butyryl content can withstand higher operational temperatures and has greater mechanical strength while CAB with higher butyryl content seems to be more resistant to radiation.

2.
Anal Chem ; 88(12): 6223-30, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27240571

ABSTRACT

An optimized method is described for U/Pu separation and subsequent measurement of the amount contents of uranium isotopes by total evaporation (TE) TIMS with a double filament setup combined with filament carburization for age determination of plutonium samples. The use of carburized filaments improved the signal behavior for total evaporation TIMS measurements of uranium. Elevated uranium ion formation by passive heating during rhenium signal optimization at the start of the total evaporation measurement procedure was found to be a result from byproducts of the separation procedure deposited on the filament. This was avoided using carburized filaments. Hence, loss of sample before the actual TE data acquisition was prevented, and automated measurement sequences could be accomplished. Furthermore, separation of residual plutonium in the separated uranium fraction was achieved directly on the filament by use of the carburized filaments. Although the analytical approach was originally tailored to achieve reliable results only for the (238)Pu/(234)U, (239)Pu/(235)U, and (240)Pu/(236)U chronometers, the optimization of the procedure additionally allowed the use of the (242)Pu/(238)U isotope amount ratio as a highly sensitive indicator for residual uranium present in the sample, which is not of radiogenic origin. The sample preparation method described in this article has been successfully applied for the age determination of CRM NBS 947 and other sulfate and oxide plutonium samples.

3.
J Radioanal Nucl Chem ; 307: 1077-1085, 2016.
Article in English | MEDLINE | ID: mdl-26834306

ABSTRACT

The paper describes the preparation and production of the reference materials, IRMM-1000a and IRMM-1000b, certified for the production date based on the 230Th/234U radiochronometer in compliance with ISO Guide 34:2009. The production date of the reference materials corresponds to the last separation of 230Th from 234U, i.e. when the initial daughter nuclide content in the material was finally removed. For the preparation low-enriched uranium was used, which was purified using a unique methodology to guarantee high U recovery and Th separation efficiency. The CRM is intended for calibration, quality control, and assessment of method performance in nuclear forensics and safeguards.

4.
Analyst ; 139(3): 668-75, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24336357

ABSTRACT

Information about the molecular composition of airborne uranium-bearing particles may be useful as an additional tool for nuclear safeguards. In order to combine the detection of micrometer-sized particles with the analysis of their molecular forms, we used a hybrid system enabling Raman microanalysis in high vacuum inside a SEM chamber (SEM-SCA system). The first step involved an automatic scan of a sample to detect and save coordinates of uranium particles, along with X-ray microanalysis. In the second phase, the detected particles were relocated in a white light image and subjected to Raman microanalysis. The consecutive measurements by the two beams showed exceptional fragility of uranium particles, leading to their ultimate damage and change of uranium oxidation state. We used uranium reference particles prepared by hydrolysis of uranium hexafluoride to test the reliability of the Raman measurements inside the high vacuum. The results achieved by the hybrid system were verified by using a standalone Raman microspectrometer. When deposited on exceptionally smooth substrates, uranyl fluoride particles smaller than 1000 nm could successfully be analyzed with the SEM-SCA system.

5.
Anal Chem ; 83(8): 3011-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21417310

ABSTRACT

An improved method was recently developed for the isotopic analysis of single-reference uranium oxide particles for nuclear safeguards. This method is a combination of analytical tools including in situ SEM micromanipulation, filament carburization and multiple ion counting (MIC) detection, which is found to improve sensitivity for thermal ionization mass spectrometry (TIMS) isotope ratio analysis. The question was raised whether this method could be applied for the detection of nuclear signatures in real-life particles with unknown isotopic composition. Therefore, environmental dust was collected in different locations within a nuclear facility. The screening of the samples to find the uranium particles of interest was performed using a scanning electron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) detector. The comparison of the measurement results to reference data evaluated by international safeguards authorities was of key importance for data interpretation. For the majority of investigated particles, detection of uranium isotopic signatures provided information on current and past nuclear feed operations that compared well with facility declarations.


Subject(s)
Temperature , Uranium/analysis , Microscopy, Electron, Scanning , Particle Size , Spectrometry, Mass, Electrospray Ionization , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...