Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PeerJ ; 10: e13537, 2022.
Article in English | MEDLINE | ID: mdl-35702255

ABSTRACT

The unusual arrival of Sargassum on Caribbean beaches is an emerging problem that has generated numerous challenges. The monitoring, visualization, and estimation of Sargassum coverage on the beaches remain a constant complication. This study proposes a new mapping methodology to estimate Sargassum coverage on the beaches. Semantic segmentation of geotagged photographs allows the generation of accurate maps showing the percent coverage of Sargassum. The first dataset of segmented Sargassum images was built for this study and used to train the proposed model. The results demonstrate that the currently proposed method has an accuracy of 91%, improving on the results reported in the state-of-the-art method where data was also collected through a crowdsourcing scheme, in which only information on the presence and absence of Sargassum is displayed.


Subject(s)
Sargassum , Semantics , Caribbean Region
2.
PeerJ Comput Sci ; 7: e528, 2021.
Article in English | MEDLINE | ID: mdl-34084930

ABSTRACT

The atypical arrival of pelagic Sargassum to the Mexican Caribbean beaches has caused considerable economic and ecological damage. Furthermore, it has raised new challenges for monitoring the coastlines. Historically, satellite remote-sensing has been used for Sargassum monitoring in the ocean; nonetheless, limitations in the temporal and spatial resolution of available satellite platforms do not allow for near real-time monitoring of this macro-algae on beaches. This study proposes an innovative approach for monitoring Sargassum on beaches using Crowdsourcing for imagery collection, deep learning for automatic classification, and geographic information systems for visualizing the results. We have coined this collaborative process "Collective View". It offers a geotagged dataset of images illustrating the presence or absence of Sargassum on beaches located along the northern and eastern regions in the Yucatan Peninsula, in Mexico. This new dataset is the largest of its kind in surrounding areas. As part of the design process for Collective View, three convolutional neural networks (LeNet-5, AlexNet and VGG16) were modified and retrained to classify images, according to the presence or absence of Sargassum. Findings from this study revealed that AlexNet demonstrated the best performance, achieving a maximum recall of 94%. These results are good considering that the training was carried out using a relatively small set of unbalanced images. Finally, this study provides a first approach to mapping the Sargassum distribution along the beaches using the classified geotagged images and offers novel insight into how we can accurately map the arrival of algal blooms along the coastline.

3.
PeerJ ; 7: e7956, 2019.
Article in English | MEDLINE | ID: mdl-31695966

ABSTRACT

The growth of Chlamydomonas reinhardtii microalgae cultures was successfully monitored, using classic off-line optical techniques (optical density and fluorescence) and on-line analysis of digital images. In this study, we found that the chlorophyll fluorescence ratio F 685/F 740 has a linear correlation with the logarithmic concentration of microalgae. By using digital images, the biomass concentration correlated with the luminosity of the images through an exponential equation and the length of penetration of a super luminescent blue beam (λ = 440 nm) through an inversely proportional function. The outcomes of this study are useful to monitor both research and industrial microalgae cultures.

4.
PeerJ ; 7: e6842, 2019.
Article in English | MEDLINE | ID: mdl-31106059

ABSTRACT

Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic Sargassum with negative consequences both ecologically and economically. Based on deep learning techniques, this study proposes a novel algorithm for floating and accumulated pelagic Sargassum detection along the coastline of Quintana Roo, Mexico. Using convolutional and recurrent neural networks architectures, a deep neural network (named ERISNet) was designed specifically to detect these macroalgae along the coastline through remote sensing support. A new dataset which includes pixel values with and without Sargassum was built to train and test ERISNet. Aqua-MODIS imagery was used to build the dataset. After the learning process, the designed algorithm achieves a 90% of probability in its classification skills. ERISNet provides a novel insight to detect accurately algal blooms arrivals.

SELECTION OF CITATIONS
SEARCH DETAIL
...