Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Ther ; 24: 499-506, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37779903

ABSTRACT

Introduction: Bladder reconstruction is a huge challenge in the field of urology. In recent years, perfusion methods have brought promising results in the field of tissue engineering. We prepared bladder decellularized scaffolds by improved perfusion, which may be suitable for bladder reconstruction. Methods: We prepared decellularized scaffolds of rat bladder by perfusion of SDS (0.5% sodium dodecyl sulfate), SDS-SDC (0.5% sodium dodecyl sulfate +0.5% sodium deoxycholate). Histological characteristics of bladder decellularized scaffolds were assessed by Hematoxylin and eosin, Masson, and DAPI staining. Moreover, we also prepared a murine bladder transplantation model to evaluate the regenerative potential of scaffolds. Results: Hematoxylin and eosin, Masson, and DAPI staining indicated almost no cellular component residues in the SDS-SDC group. Histological analysis (hematoxylin and eosin staining, Masson staining), CD31 and F4/80 staining analysis, one month after implantation, revealed that the decellularized scaffolds had regenerative characteristics, and the SDS-SDC scaffold had better regenerative properties than the SDS scaffold. Conclusions: We successfully prepared the decellularized scaffold for the rat bladder by perfusion. Our results showed that the SDS-SDC scaffold had better decellularization efficiency and reconstruction ability than the SDS scaffold, which provides a new perspective on bladder reconstruction materials.

2.
Front Pediatr ; 10: 797208, 2022.
Article in English | MEDLINE | ID: mdl-35450105

ABSTRACT

Background: Neonatal sepsis is still a major cause of death and morbidity in newborns all over the world. Despite substantial developments in diagnosis, treatments, and prevention strategies, sepsis remains a common problem in clinical practice, particularly in low-resource countries. Methods: A retrospective cohort study of 238 neonates with positive blood culture-proven sepsis (in Muhimbili National Hospital) was conducted from January 2019 to December 2020. The outcomes of hospitalization were survival and death. Results: In total, 45.4% mortality resulted from 238 neonates who had sepsis exclusively based on blood culture positivity. A significant association was found between very low birth weight (VLBW), hyperglycemia, mechanical ventilation, and high neonatal mortality. Among the different clinical presentations of neonatal sepsis, lethargy, vomiting, and respiratory distress were found to be frequently associated with neonatal mortality. Furthermore, sepsis with Gram-negative bacteria and early-onset sepsis were also associated with high neonatal mortality. Of the 108 neonatal deaths, the largest proportion (40%) was observed with Staphylococcus aureus, and the remaining 38% was caused by Klebsiella, 14% by Escherichia coli, 5% by Pseudomonas, 4% by Acinetobacter, and 2% by Streptococcus. No neonatal deaths from Serratia infection were observed. The overall resistance of isolated organisms to the recommended first-line antibiotics was 84% for ampicillin and 71.3% for gentamicin. The resistance pattern for the recommended second-line antibiotics was 76.2% for ceftriaxone, 35.9% for vancomycin, and 17.5% for amikacin. Conclusion: VLBW, early-onset sepsis, clinical and laboratory parameters like lethargy, vomiting, and hyperglycemia, sepsis with Gram-negative bacteria, and being on mechanical ventilation are strong predictors of death in neonatal sepsis. In addition, this study discovered extraordinarily high resistance to conventional antibiotics. These findings give light on the crucial aspects to consider in preventing this disease and poor outcomes.

3.
Exp Cell Res ; 409(1): 112885, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34662557

ABSTRACT

The cytoskeleton, with its actin bundling proteins, plays crucial roles in a host of cellular function, such as cancer metastasis, antigen presentation and trophoblast migration and invasion, as a result of cytoskeletal remodeling. A key player in cytoskeletal remodeling is fascin. Upregulation of fascin induces the transition of epithelial phenotypes to mesenchymal phenotypes through complex interaction with transcription factors. Fascin expression also regulates mitochondrial F-actin to promote oxidative phosphorylation (OXPHOS) in some cancer cells. Trophoblast cells, on the other hand, exhibit similar physiological functions, involving the upregulation of genes crucial for its migration and invasion. Owing to the similar tumor-like characteristics among cancer and trophoblats, we review recent studies on fascin in relation to cancer and trophoblast cell biology; and based on existing evidence, link fascin to the establishment of the maternal-fetal interface.


Subject(s)
Carcinogenesis/genetics , Carrier Proteins/genetics , Embryo Implantation/genetics , Microfilament Proteins/genetics , Animals , Cell Movement/genetics , Humans , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...