Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0303496, 2024.
Article in English | MEDLINE | ID: mdl-38739622

ABSTRACT

INTRODUCTION: Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS: In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.


Subject(s)
Aortic Valve Stenosis , Biomarkers , Rheumatic Heart Disease , Humans , Rheumatic Heart Disease/diagnostic imaging , Rheumatic Heart Disease/physiopathology , Rheumatic Heart Disease/metabolism , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/physiopathology , Biomarkers/metabolism , Case-Control Studies , Cross-Sectional Studies , Male , Female , Metabolomics/methods , Echocardiography/methods , Proteomics/methods , Magnetic Resonance Imaging/methods , Multiomics
2.
J Cardiovasc Magn Reson ; 25(1): 65, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968709

ABSTRACT

The early career professionals in the field of Cardiovascular Magnetic Resonance (CMR) face unique challenges and hurdles while establishing their careers in the field. The Society for Cardiovascular Magnetic Resonance (SCMR) has expanded the role of the early career section within the society to foster the careers of future CMR leaders. This paper aims to describe the obstacles and available opportunities for the early career CMR professionals worldwide. Societal opportunities and actions targeted at the professional advancement of the early career CMR imagers are needed to ensure continuous growth of CMR as an imaging modality globally.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
3.
J Biomech Eng ; 145(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37470483

ABSTRACT

Rheumatic heart disease (RHD) is a neglected tropical disease despite the substantial global health burden. In this study, we aimed to develop a lower cost method of modeling aortic blood flow using subject-specific velocity profiles, aiding our understanding of RHD's consequences on the structure and function of the ascending aorta. Echocardiography and cardiovascular magnetic resonance (CMR) are often used for diagnosis, including valve dysfunction assessments. However, there is a need to further characterize aortic valve lesions to improve treatment options and timing for patients, while using accessible and affordable imaging strategies. Here, we simulated effects of RHD aortic valve lesions on the aorta using computational fluid dynamics (CFD). We hypothesized that inlet velocity distribution and wall shear stress (WSS) will differ between RHD and non-RHD individuals, as well as between subject-specific and standard Womersley velocity profiles. Phase-contrast CMR data from South Africa of six RHD subjects with aortic stenosis and/or regurgitation and six matched controls were used to estimate subject-specific velocity inlet profiles and the mean velocity for Womersley profiles. Our findings were twofold. First, we found WSS in subject-specific RHD was significantly higher (p < 0.05) than control subject simulations, while Womersley simulation groups did not differ. Second, evaluating spatial velocity differences (ΔSV) between simulation types revealed that simulations of RHD had significantly higher ΔSV than non-RHD (p < 0.05), these results highlight the need for implementing subject-specific input into RHD CFD, which we demonstrate how to accomplish through accessible methods.


Subject(s)
Rheumatic Heart Disease , Humans , Rheumatic Heart Disease/diagnostic imaging , Aorta/physiology , Aortic Valve/diagnostic imaging , Magnetic Resonance Imaging , Hemodynamics/physiology , Blood Flow Velocity/physiology
4.
Int J Cardiol ; 325: 176-185, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32980432

ABSTRACT

Rheumatic heart disease (RHD) is prevalent in sub-Saharan Africa, where the capacity for diagnosis and evaluation of disease severity and complications is not always optimal. While the medical history and physical examination are important in the assessment of patients suspected to have RHD, cardiovascular imaging techniques are useful for confirmation of the diagnosis. Echocardiography is the workhorse modality for initial evaluation and diagnosis of RHD. Cardiovascular magnetic resonance is complementary and may provide additive information, including tissue characteristics, where echocardiography is inadequate or non-diagnostic. There is emerging evidence on the role of computed tomography, particularly following valve replacement surgery, in the monitoring and management of RHD. This article summarises the techniques used in imaging RHD patients, considers the evidence base for their utility, discusses their limitations and recognises the clinical contexts in which indications and imaging with various modalities are expanding.


Subject(s)
Rheumatic Fever , Rheumatic Heart Disease , Echocardiography , Humans , Rheumatic Heart Disease/diagnostic imaging , Rheumatic Heart Disease/therapy , Tomography, X-Ray Computed
5.
Antioxidants (Basel) ; 8(8)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443195

ABSTRACT

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.

6.
Mediators Inflamm ; 2016: 8401843, 2016.
Article in English | MEDLINE | ID: mdl-27382191

ABSTRACT

Oleanolic acid is a pentacyclic triterpenoid compound widely found in plants and well known for its medicinal properties. Oleanolic acid (OA) was isolated from the ethyl acetate extract of Syzygium aromaticum flower buds. Semisynthesis afforded both acetate and ester derivatives. The derived compounds were monitored with thin layer chromatography and confirmed with nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), Fourier infrared (FT-IR) spectroscopy, and melting point (Mp). All these compounds were evaluated for their analgesic and anti-inflammatory properties at a dose of 40 mg/kg. Significant analgesic and anti-inflammatory effects were noted for all OA-derived compounds. In the formalin-induced pain test, the derivatives showed better analgesic effects compared to their precursor, whereas, in the tale flick test, oleanolic acid proved to be superior in analgesic effects compared to all its derivatives with the exception of the acetyl derivative. Acute inflammatory tests showed that acetyl derivatives possessed better anti-inflammatory activity compared to the other compounds. In conclusion, semisynthesis of oleanolic acid yielded several derivatives with improved solubility and enhanced analgesic and anti-inflammatory properties.


Subject(s)
Analgesics/chemistry , Anti-Inflammatory Agents/chemistry , Oleanolic Acid/chemistry , Plant Extracts/chemistry , Syzygium/chemistry , Animals , Biological Assay , Female , Flowers/chemistry , Inflammation , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Oleanolic Acid/chemical synthesis , Plant Extracts/chemical synthesis , Rats , Rats, Wistar , Solubility , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...