Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 182(2): 329-344.e19, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32589946

ABSTRACT

Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.


Subject(s)
Immunoglobulins/metabolism , Neoplasms/pathology , Protein Interaction Maps , B7-H1 Antigen/metabolism , Carcinoembryonic Antigen/metabolism , Cell Communication , Cluster Analysis , Culture Media, Conditioned/chemistry , HEK293 Cells , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Ligands , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Protein Binding , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Mol Cell Proteomics ; 18(11): 2310-2323, 2019 11.
Article in English | MEDLINE | ID: mdl-31308249

ABSTRACT

Receptors expressed on the plasma membrane and their interacting partners critically regulate cellular communication during homeostasis and disease, and as such represent main therapeutic targets. Despite its importance for drug development, receptor-ligand proteomics has remained a daunting field, in part because of the challenges associated to the study of membrane-expressed proteins. Here, to enable sensitive detection of receptor-ligand interactions in high throughput, we implement a new platform, the Conditioned Media AlphaScreen, for interrogation of a library consisting of most single transmembrane human proteins. Using this method to study key immune receptors, we identify and further validate the interleukin receptor IL20RA as the first binding partner for the checkpoint inhibitor B7-H3. Further, KIR2DL5, a natural killer cell protein that had remained orphan, is uncovered as a functional binding partner for the poliovirus receptor (PVR). This interaction is characterized using orthogonal assays, which demonstrate that PVR specifically engages KIR2DL5 on natural killer cells leading to inhibition of cytotoxicity. Altogether, these results reveal unappreciated links between protein families that may importantly influence receptor-driven functions during disease. Applicable to any target of interest, this technology represents a versatile and powerful approach for elucidation of receptor-ligand interactomes, which is essential to understand basic aspects of the biology of the plasma membrane proteins and ultimately inform the development of novel therapeutic strategies.


Subject(s)
B7 Antigens/metabolism , Extracellular Matrix/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin/metabolism , Receptors, KIR2DL5/metabolism , Receptors, Virus/metabolism , Cell Communication , HEK293 Cells , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Ligands , Protein Binding , Protein Interaction Maps
3.
MAbs ; 11(5): 977-986, 2019 07.
Article in English | MEDLINE | ID: mdl-30907238

ABSTRACT

HEK293 transient expression systems are used to quickly generate proteins for research and pre-clinical studies. With the aim of engineering a high-producing host that grows and transfects robustly in bioreactors, we deleted the pro-apoptotic genes Bax and Bak in an HEK293 cell line. The HEK293 Bax Bak double knock-out (HEK293 DKO) cell line exhibited resistance to apoptosis and shear stress. HEK293 DKO cells sourced from 2 L seed train bioreactors were most productive when a pH setpoint of 7.0, a narrow pH deadband of ±0.03, and a DO setpoint of 30% were used. HEK293 DKO seed train cells cultivated for up to 60 days in a 35 L bioreactor showed similar productivities to cells cultivated in shake flasks. To optimize HEK293 DKO transfection cultures, we first evaluated different pH and agitation parameters in ambr15 microbioreactors before scaling up to 10 L wavebag bioreactors. In ambr15 microbioreactors with a pH setpoint of 7.0, a wide pH deadband of ±0.3, and an agitation of 630 rpm, HEK293 DKO transient cultures yielded antibody titers up to 650 mg/L in 7 days. The optimal ambr15 conditions prompted us to operate the 10 L wavebag transfection without direct pH control to mimic the wide pH deadband ranges. The HEK293 DKO transfection process produces high titers at all scales tested. Combined, our optimized HEK293 DKO 35 L bioreactor seed train and 10 L high titer transient processes support efficient, large-scale recombinant protein production for research studies.


Subject(s)
HEK293 Cells , Recombinant Proteins/biosynthesis , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics , Bioreactors , Gene Expression , Gene Knockdown Techniques , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , Recombinant Proteins/genetics , Transfection
4.
Methods Mol Biol ; 1850: 179-187, 2018.
Article in English | MEDLINE | ID: mdl-30242687

ABSTRACT

Transient transfection of mammalian cells is used in the biotechnology industry to quickly supply recombinant protein for research and large molecule drug development. Here, we describe a method for high throughput transient transfection of Human Embryonic Kidney 293 (HEK293) cells in 30 mL tubespins using polyethylenimine (PEI) as a transfection reagent. An automated liquid handler can be used to perform pipetting steps for transfecting batches of 96 tubespins, and septa in the tubespin caps allow for rapid processing without decapping. The addition of valproic acid (VPA) to transfection cultures enhances recombinant protein production. The thawing and passaging operations for HEK293 cultures to source the transient transfections are also described.


Subject(s)
Recombinant Proteins/metabolism , Transfection/methods , Biotechnology , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Recombinant Proteins/genetics
5.
MAbs ; 10(4): 624-635, 2018.
Article in English | MEDLINE | ID: mdl-29494273

ABSTRACT

To rapidly find "best-in-class" antibody therapeutics, it has become essential to develop high throughput (HTP) processes that allow rapid assessment of antibodies for functional and molecular properties. Consequently, it is critical to have access to sufficient amounts of high quality antibody, to carry out accurate and quantitative characterization. We have developed automated workflows using liquid handling systems to conduct affinity-based purification either in batch or tip column mode. Here, we demonstrate the capability to purify >2000 antibodies per day from microscale (1 mL) cultures. Our optimized, automated process for human IgG1 purification using MabSelect SuRe resin achieves ∼70% recovery over a wide range of antibody loads, up to 500 µg. This HTP process works well for hybridoma-derived antibodies that can be purified by MabSelect SuRe resin. For rat IgG2a, which is often encountered in hybridoma cultures and is challenging to purify via an HTP process, we established automated purification with GammaBind Plus resin. Using these HTP purification processes, we can efficiently recover sufficient amounts of antibodies from mammalian transient or hybridoma cultures with quality comparable to conventional column purification.


Subject(s)
Antibodies, Monoclonal/analysis , Chromatography, Affinity/methods , High-Throughput Screening Assays/methods , Immunoglobulin G/analysis , Animals , Humans , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...