Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Viruses ; 14(1)2021 12 31.
Article in English | MEDLINE | ID: mdl-35062278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset specialized in type I interferon production, whose role in Human Immunodeficiency Virus (HIV) infection and pathogenesis is complex and not yet well defined. Considering the crucial role of the accessory protein Nef in HIV pathogenicity, possible alterations in intracellular signalling and extracellular vesicle (EV) release induced by exogenous Nef on uninfected pDCs have been investigated. As an experimental model system, a human plasmacytoid dendritic cell line, GEN2.2, stimulated with a myristoylated recombinant NefSF2 protein was employed. In GEN2.2 cells, Nef treatment induced the tyrosine phosphorylation of STAT-1 and STAT-2 and the production of a set of cytokines, chemokines and growth factors including IP-10, MIP-1ß, MCP-1, IL-8, TNF-α and G-CSF. The released factors differed both in type and amount from those released by macrophages treated with the same viral protein. Moreover, Nef treatment slightly reduces the production of small EVs, and the protein was found associated with the small (size < 200 nm) but not the medium/large vesicles (size > 200 nm) collected from GEN2.2 cells. These results add new information on the interactions between this virulence factor and uninfected pDCs, and may provide the basis for further studies on the interactions of Nef protein with primary pDCs.


Subject(s)
Cytokines/metabolism , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism , HIV-1/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , Chemokines/metabolism , Dendritic Cells/virology , HIV Infections/virology , Humans , Macrophages/metabolism , Recombinant Proteins , STAT1 Transcription Factor/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/immunology
2.
Vaccines (Basel) ; 8(2)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456079

ABSTRACT

We recently described a cytotoxic CD8+ T lymphocyte (CTL) vaccine platform based on the intramuscular (i.m.) injection of DNA eukaryotic vectors expressing antigens of interest fused at the C-terminus of HIV-1 Nefmut, i.e., a functionally defective mutant that is incorporated at quite high levels into exosomes/extracellular vesicles (EVs). This system has been proven to elicit strong CTL immunity against a plethora of both viral and tumor antigens, as well as inhibit both transplantable and orthotopic tumors in mice. However, a number of open issues remain regarding the underlying mechanism. Here we provide evidence that hindering the uploading into EVs of Nefmut-derived products by removing the Nefmut N-terminal fatty acids leads to a dramatic reduction of the downstream antigen-specific CD8+ T-cell activation after i.m. injection of DNA vectors in mice. This result formally demonstrates that the generation of engineered EVs is part of the mechanism underlying the in vivo induced CD8+ T-cell immunogenicity. Gaining new insights on the EV-based vaccine platform can be relevant in view of its possible translation into the clinic to counteract both chronic and acute infections as well as tumors.

3.
Cytokine Growth Factor Rev ; 51: 40-48, 2020 02.
Article in English | MEDLINE | ID: mdl-31926807

ABSTRACT

HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual's lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Cell Communication/immunology , Disease Reservoirs/virology , Extracellular Vesicles/physiology , HIV Infections/immunology , Virus Latency , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , Extracellular Space , HIV Infections/drug therapy , HIV-1 , Humans , Virus Replication
4.
Int J Nanomedicine ; 14: 8755-8768, 2019.
Article in English | MEDLINE | ID: mdl-31806970

ABSTRACT

PURPOSE: Single-chain variable fragments (scFvs) are one of the smallest antigen-binding units having the invaluable advantage to be expressed by a unique short open reading frame (ORF). Despite their reduced size, spontaneous cell entry of scFvs remains inefficient, hence precluding the possibility to target intracellular antigens. Here, we describe an original strategy to deliver scFvs inside target cells through engineered extracellular vesicles (EVs). This approach relies on the properties of a Human Immunodeficiency Virus (HIV)-1 Nef mutant protein referred to as Nefmut. It is a previously characterized Nef allele lacking basically all functions of wt Nef, yet strongly accumulating in the EV lumen also when fused at its C-terminus with a foreign protein. To gain the proof-of-principle for the efficacy of the proposed strategy, the tumor-promoting Human Papilloma Virus (HPV)16-E7 protein was considered as a scFv-specific intracellular target. The oncogenic effect of HPV16-E7 relies on its binding to the tumor suppressor pRb protein leading to a dysregulated cell duplication. Interfering with this interaction means impairing the HPV16-E7-induced cell proliferation. METHODS: The Nefmut gene was fused in frame at its 3'-terminus with the ORF coding for a previously characterized anti-HPV16-E7 scFv. Interaction between the Nefmut-fused anti-HPV16-E7 scFv and the HPV16-E7 protein was tested by both confocal microscope and co-immunoprecipitation analyses on co-transfected cells. The in cis anti-proliferative effect of the Nefmut/anti-HPV16-E7 scFv was assayed by transfecting HPV16-infected cells. The anti-proliferative effect of EVs engineered with Nefmut/anti-HPV16-E7 scFv on HPV16-E7-expressing cells was evaluated in two ways: i) through challenge with purified EVs by a Real-Time Cell Analysis system and ii) in transwell co-cultures by an MTS-based assay. RESULTS: The Nefmut/anti-HPV16-E7 scFv chimeric product is efficiently uploaded in EVs, binds HPV16-E7, and inhibits the proliferation of HPV16-E7-expressing cells. Most important, challenge with cell-free EVs incorporating the Nefmut/anti-HPV16-E7 scFv led to the inhibition of proliferation of HPV16-E7-expressing cells. The proliferation of these cells was hindered also when they were co-cultured in transwells with cells producing EVs uploading Nefmut/anti-HPV16-E7 scFv. CONCLUSION: Our data represent the proof-of-concept for the possibility to target intracellular antigens through EV-mediated delivery of scFvs. This finding could be relevant to design novel methods of intracellular therapeutic interventions.


Subject(s)
Extracellular Vesicles/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/virology , Single-Chain Antibodies/administration & dosage , Bystander Effect , Cell Line , Cell Proliferation , Coculture Techniques , Exosomes/immunology , Exosomes/metabolism , Extracellular Vesicles/genetics , Human papillomavirus 16/immunology , Human papillomavirus 16/pathogenicity , Humans , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/prevention & control , Single-Chain Antibodies/genetics , Transfection , nef Gene Products, Human Immunodeficiency Virus/genetics
5.
BMC Biotechnol ; 19(1): 67, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31623599

ABSTRACT

BACKGROUND: Lymphocyte-activation gene (LAG)3 is a 498 aa transmembrane type I protein acting as an immune inhibitory receptor. It is expressed on activated lymphocytes, natural killer cells and plasmacytoid dendritic cells. In activated lymphocytes, LAG3 expression is involved in negative control of cell activation/proliferation to ensure modulation and control of immune responses. In view of its deregulated expression in tumor-infiltrating lymphocytes, LAG3, together with the additional immune checkpoint inhibitors CTLA4 and PD1, is considered a major target in order to reverse the immunosuppression typically mounting in oncologic diseases. Since many patients still fail to respond to current immune checkpoints-based therapies, the identification of new effective immune inhibitors is a priority in the ongoing fight against cancer. RESULTS: We identified a novel human single-chain variable fragment (scFv) Ab against a conformational epitope of LAG3 by in vitro phage display technology using the recombinant antigen as a bait. This scFv (referred to as F7) was characterized in terms of binding specificity to both recombinant antigen and human LAG3-expressing cells. It was then rebuilt into an IgG format pre-optimized for clinical usage, and the resulting bivalent construct was shown to preserve its ability to bind LAG3 on human cells. Next, we analyzed the activity of the anti-LAG3 scFvF7 using two different antigen-specific CD8+ T lymphocyte clones as target cells. We proved that the reconstituted anti-LAG3 F7 Ab efficiently binds the cell membrane of both cell clones after peptide-activation. Still more significantly, we observed a striking increase in the peptide-dependent cell activation upon Ab treatment as measured in terms of IFN-γ release by both ELISA and ELISPOT assays. CONCLUSIONS: Overall, the biotechnological strategy described herein represents a guiding development model for the search of novel useful immune checkpoint inhibitors. In addition, our functional data propose a novel candidate reagent for consideration as a cancer treatment.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Glycine max/metabolism , Peptide Library , Plants, Genetically Modified/metabolism , Bacillus thuringiensis/metabolism , Humans , Plants, Genetically Modified/genetics , Reverse Transcriptase Polymerase Chain Reaction , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , Glycine max/genetics
6.
J Mol Med (Berl) ; 97(8): 1139-1153, 2019 08.
Article in English | MEDLINE | ID: mdl-31161312

ABSTRACT

Intrinsic genetic instability of tumor cells leads to continuous production of mutated proteins referred to as tumor-specific neoantigens. Generally, they are recognized as nonself products by the host immune system. However, an effective adaptive response clearing neoantigen-expressing cells is lost in tumor diseases. Most advanced therapeutic strategies aim at inducing neoantigen-specific immune activation through personalized approaches. They include tumor cell exome sequencing, human leukocyte antigen (HLA) typing, synthesis, and injection of peptides/RNA with adjuvants. Here, we propose an innovative method to induce a CD8+ T cytotoxic lymphocyte (CTL) immune response against tumor neoantigens bypassing the steps needed in current therapeutic strategies of personalized vaccination. We assumed that tumor cells can be the most efficient and precise factory of major histocompatibility complex (MHC) class I-associated, tumor neoantigen-derived peptides. Hence, endowing tumor cells with professional antigen-presenting functions would prime CD8+ T lymphocytes towards a response against nonself tumor antigens. To explore this possibility, both adenocarcinoma and melanoma human cells were engineered to express both CD80 and CD86 costimulatory molecules. HLA-matched lymphocytes were then primed through cocultivation with the engineered tumor cells. The generation of tumor-specific CD8+ T lymphocytes was tested through the combined analysis of cell activation markers, formation of immunologic synapses, generation of tumor antigen-specific CD8+ T lymphocytes, and cytotoxic activity. Our data consistently indicate that tumor cells endowed with professional antigen-presenting functions can generate an effective tumor-specific CTL immune response. This finding may open avenues towards the development of innovative antitumor immunotherapies. KEY MESSAGES: We established a novel method to induce antitumor CTLs without a need to identify TAAs and/or tumor neoantigens. This strategy relies on transducing tumor cells with a retroviral vector expressing both CD80 and CD86. In this way, tumor cells prime naïve CD8+ T lymphocytes in a way that CTLs killing the same tumor cells are generated. These findings open the way towards preclinical assays in the perspective to introduce this antitumor immunotherapy strategy in clinic.


Subject(s)
Antigen Presentation , Antigens, Neoplasm , Cancer Vaccines , Cytotoxicity, Immunologic , Dendritic Cells , Neoplasms , T-Lymphocytes, Cytotoxic , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/pathology , HEK293 Cells , Humans , MCF-7 Cells , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
7.
Curr Drug Targets ; 20(1): 87-95, 2019.
Article in English | MEDLINE | ID: mdl-29779478

ABSTRACT

BACKGROUND: Eukaryotic cells release vesicles of different sizes under both physiological and pathological conditions. On the basis of the respective biogenesis, extracellular vesicles are classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are considered tools for innovative therapeutic interventions, especially when engineered with effector molecules. The delivery functions of exosomes are favored by a number of typical features. These include their small size (i.e., 50-200 nm), the membrane composition tightly similar to that of producer cells, lack of toxicity, stability in serum as well as other biological fluids, and accession to virtually any organ and tissue including central nervous system. However, a number of unresolved questions still affects the possible use of exosomes in therapy. Among these are the exact identification of both in vitro and ex vivo produced vesicles, their large-scale production and purification, the uploading efficiency of therapeutic macromolecules, and the characterization of their pharmacokinetics. OBJECTIVE: Here, we discuss two key aspects to be analyzed before considering exosomes as a tool of delivery for the desired therapeutic molecule, i.e., techniques of engineering, and their in vivo biodistribution/ pharmacokinetics. In addition, an innovative approach aimed at overcoming at least part of the obstacles towards a safe and efficient use of exosomes in therapy will be discussed. CONCLUSION: Several biologic features render exosomes an attractive tool for the delivery of therapeutic molecules. They will surely be a part of innovative therapeutic interventions as soon as few still unmet technical hindrances will be overcome.


Subject(s)
Drug Delivery Systems/methods , Exosomes/genetics , Genetic Engineering/methods , Animals , Biotechnology/methods , Cell Line, Tumor , Humans , Mice , Models, Animal , Tissue Distribution
8.
Mol Biotechnol ; 60(11): 773-782, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30167966

ABSTRACT

Eukaryotic cells constitutively produce nanovesicles of 50-150 nm of diameter, referred to as exosomes, upon release of the contents of multivesicular bodies (MVBs). We recently characterized a novel, exosome-based way to induce cytotoxic T lymphocyte (CTL) immunization against full-length antigens. It is based on DNA vectors expressing products of fusion between the exosome-anchoring protein Nef mutant (Nefmut) with the antigen of interest. The strong efficiency of Nefmut to accumulate in MVBs results in the production of exosomes incorporating huge amounts of the desired antigen. When translated in animals, the injection of Nefmut-based DNA vectors generates engineered exosomes whose internalization in antigen-presenting cells induces cross-priming and antigen-specific CTL immunity. Here, we describe the molecular strategies we followed to produce DNA vectors aimed at generating immunogenic exosomes potentially useful to elicit a CTL immune response against antigens expressed by the etiologic agents of major chronic viral infections, i.e., HIV-1, HBV, and the novel tumor-associated antigen HOXB7. Unique methods intended to counteract intrinsic RNA instability and nuclear localization of the antigens have been developed. The success we met with the production of these engineered exosomes opens the way towards pre-clinic experimentations devoted to the optimization of new vaccine candidates against major infectious and tumor pathologies.


Subject(s)
Exosomes/genetics , Genetic Vectors/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , Acquired Immunodeficiency Syndrome/drug therapy , Exosomes/immunology , Gene Products, nef/genetics , Genetic Vectors/immunology , HEK293 Cells , Hepatitis B/drug therapy , Humans , Neoplasms/drug therapy , Vaccines/immunology
9.
J Mol Med (Berl) ; 96(2): 211-221, 2018 02.
Article in English | MEDLINE | ID: mdl-29282521

ABSTRACT

We recently described a novel biotechnological platform for the production of unrestricted cytotoxic T lymphocyte (CTL) vaccines. It relies on in vivo engineering of exosomes, i.e., nanovesicles constitutively released by all cells, with full-length antigens of choice upon fusion with an exosome-anchoring protein referred to as Nefmut. They are produced upon intramuscular injection of a DNA vector and, when uploaded with a viral tumor antigen, were found to elicit an immune response inhibiting the tumor growth in a model of transplantable tumors. However, for a possible application in cancer immunotherapy, a number of key issues remained unmet. Among these, we investigated: (i) whether the immunogenic stimulus induced by the engineered exosomes can break immune tolerance, and (ii) their effectiveness when applied in human system. As a model of immune tolerance, we considered mice transgenic for the expression of activated rat HER2/neu which spontaneously develop adenocarcinomas in all mammary glands. When these mice were injected with a DNA vector expressing the product of fusion between Nefmut and the extracellular domain of HER2/neu, antigen-specific CD8+ T lymphocytes became readily detectable. This immune response associated with a HER2-directed CTL activity and a significant delay in tumor development. On the other hand, through cross-priming experiments, we demonstrated the effectiveness of the engineered exosomes emerging from transfected human primary muscle cells in inducing antigen-specific CTLs. We propose our CTL vaccine platform as part of new immunotherapy strategies against tumors expressing self-antigens, i.e., products highly expressed in oncologic lesions but tolerated by the immune system. KEY MESSAGES: We established a novel, exosome-based method to produce unrestricted CTL vaccines. This strategy is effective in breaking the tolerance towards tumor self-antigens. Our method is also useful to elicit antigen-specific CTL immunity in humans. These findings open the way towards the use of this antitumor strategy in clinic.


Subject(s)
Dendritic Cells/immunology , Exosomes/immunology , Neoplasms/therapy , Receptor, ErbB-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Cells, Cultured , Humans , Immune Tolerance , Immunotherapy , Mice, Transgenic , Muscles/cytology , Neoplasms/pathology , Receptor, ErbB-2/genetics
10.
Biotechnol J ; 13(4): e1700443, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29274250

ABSTRACT

Exosomes are 50-150 nm sized nanovesicles released by all eukaryotic cells. The authors very recently described a method to engineer exosomes in vivo with the E7 protein of Human Papilloma Virus (HPV). This technique consists in the intramuscular injection of a DNA vector expressing HPV-E7 fused at the C-terminus of an exosome-anchoring protein, that is, Nefmut , the authors previously characterized for its high levels of incorporation in exosomes. In this configuration, the ≈11 kDa E7 protein elicited a both strong and effective antigen-specific cytotoxic T lymphocyte (CTL) immunity. Attempting to establish whether this method could have general applicability, the authors expanded the immunogenicity studies toward an array of viral products of various origin and size including Ebola Virus VP24, VP40 and NP, Influenza Virus NP, Crimean-Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3. All antigens appeared stable upon fusion with Nefmut , and are uploaded in exosomes at levels comparable to Nefmut . When injected in mice, DNA vectors expressing the diverse fusion products elicited a well detectable antigen-specific CD8+ T cell response associating with a cytotoxic activity potent enough to kill peptide-loaded and/or antigen-expressing syngeneic cells. These data definitely proven both effectiveness and flexibility of this innovative CTL vaccine platform.


Subject(s)
Antigens, Viral/genetics , Exosomes/immunology , T-Lymphocytes, Cytotoxic/metabolism , Viral Vaccines/administration & dosage , Animals , Antigens, Viral/immunology , Cell Line , Genes, nef , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , HEK293 Cells , Humans , Mice , Particle Size , T-Lymphocytes, Cytotoxic/immunology , Viral Vaccines/immunology
11.
Adv Exp Med Biol ; 998: 3-19, 2017.
Article in English | MEDLINE | ID: mdl-28936729

ABSTRACT

Exosomes are extracellular vesicles of 50-150 nm in diameter secreted by basically all cell types. They mediate micro-communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Research on exosomes is a rapidly growing field, however many aspects of their biogenesis and functions still await a complete clarification. In our review we summarize most recent findings regarding biogenesis, structure, and functions of exosomes. In addition, an overview regarding the role of exosomes in both infectious and non-infectious diseases is provided. Finally, the use of exosomes as biomarkers and delivery tools for therapeutic molecules is addressed. Considering the body of literature data, exosomes have to be considered key components of the intercellular communication in both health and disease.


Subject(s)
Exosomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Animals , Biomarkers/metabolism , Drug Carriers , Exosomes/drug effects , Exosomes/pathology , Humans , Organelle Biogenesis , Signal Transduction/drug effects
12.
Int J Nanomedicine ; 12: 4579-4591, 2017.
Article in English | MEDLINE | ID: mdl-28694699

ABSTRACT

We recently proved that exosomes engineered in vitro to deliver high amounts of HPV E7 upon fusion with the Nefmut exosome-anchoring protein elicit an efficient anti-E7 cytotoxic T lymphocyte immune response. However, in view of a potential clinic application of this finding, our exosome-based immunization strategy was faced with possible technical difficulties including industrial manufacturing, cost of production, and storage. To overcome these hurdles, we designed an as yet unproven exosome-based immunization strategy relying on delivery by intramuscular inoculation of a DNA vector expressing Nefmut fused with HPV E7. In this way, we predicted that the expression of the Nefmut/E7 vector in muscle cells would result in a continuous source of endogenous (ie, produced by the inoculated host) engineered exosomes able to induce an E7-specific immune response. To assess this hypothesis, we first demonstrated that the injection of a Nefmut/green fluorescent protein-expressing vector led to the release of fluorescent exosomes, as detected in plasma of inoculated mice. Then, we observed that mice inoculated intramuscularly with a vector expressing Nefmut/E7 developed a CD8+ T-cell immune response against both Nef and E7. Conversely, no CD8+ T-cell responses were detected upon injection of vectors expressing either the wild-type Nef isoform of E7 alone, most likely a consequence of their inefficient exosome incorporation. The production of immunogenic exosomes in the DNA-injected mice was formally demonstrated by the E7-specific CD8+ T-cell immune response we detected in mice inoculated with exosomes isolated from plasma of mice inoculated with the Nefmut/E7 vector. Finally, we provide evidence that the injection of Nefmut/E7 DNA led to the generation of effective antigen-specific cytotoxic T lymphocytes whose activity was likely part of the potent, therapeutic antitumor effect we observed in mice implanted with TC-1 tumor cells. In summary, we established a novel method to generate immunogenic exosomes in vivo by the intramuscular inoculation of DNA vectors expressing the exosome-anchoring protein Nefmut and its derivatives.


Subject(s)
Antineoplastic Agents/pharmacology , Exosomes/immunology , Papillomavirus E7 Proteins/genetics , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens , Antineoplastic Agents/immunology , CD8-Positive T-Lymphocytes/immunology , DNA/administration & dosage , Exosomes/genetics , Exosomes/metabolism , Female , Genes, nef , Genetic Engineering/methods , Genetic Vectors/immunology , Mice, Inbred C57BL , Papillomavirus E7 Proteins/pharmacology
13.
Arch Virol ; 162(9): 2565-2577, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28474225

ABSTRACT

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Exosomes/physiology , HIV-1/physiology , Virus Activation/physiology , Adult , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , Cell Line , Coculture Techniques , Drug Therapy, Combination , HIV Infections/virology , Humans , Male
14.
Vaccines (Basel) ; 4(4)2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27834857

ABSTRACT

We recently described the induction of an efficient CD8⁺ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8⁺ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8⁺ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8⁺ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches.

15.
Methods Mol Biol ; 1448: 249-60, 2016.
Article in English | MEDLINE | ID: mdl-27317186

ABSTRACT

Engineering exosomes to upload heterologous proteins represents the last frontier in terms of nanoparticle-based technology. A limited number of methods suitable to associate proteins to exosome membrane has been described so far, and very little is known regarding the possibility to upload proteins inside exosomes. We optimized a method of protein incorporation in exosomes by exploiting the unique properties of a nonfunctional mutant of the HIV-1 Nef protein referred to as Nef(mut). It incorporates at high extents in exosomes meanwhile acting as carrier of protein antigens fused at its C-terminus. Manipulating Nef(mut) allows the incorporation into exosomes of high amounts of heterologous proteins which thus remain protected from external neutralization/degradation factors. These features, together with flexibility in terms of incorporation of foreign antigens and ease of production, make Nef(mut)-based exosomes a convenient vehicle for different applications (e.g., protein transduction, immunization) whose performances are comparable with those of alternative, more complex nanoparticle-based delivery systems.


Subject(s)
Exosomes/genetics , Protein Engineering/methods , nef Gene Products, Human Immunodeficiency Virus/genetics , Animals , Antigens/chemistry , Antigens/genetics , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Exosomes/chemistry , Exosomes/metabolism , Insecta/cytology , Mammals , Nanoparticles/chemistry , nef Gene Products, Human Immunodeficiency Virus/chemistry
16.
Curr Drug Targets ; 17(1): 46-53, 2016.
Article in English | MEDLINE | ID: mdl-26424397

ABSTRACT

Nef is an accessory protein expressed exclusively in primate lentiviruses. It is devoid of enzymatic activities while interacting with several cell proteins as an adaptor/scaffold protein. Intracellular functions of Nef largely account for many pathogenic effects observed in AIDS disease. Nef, despite lacking known secretory pathways, can be detected in plasma of HIV-1-infected patients at the concentration varing from 5 to 10 ng/ml. Remarkably, the levels of Nef in plasma of HIV patients do not correlate with viral load or number of CD4(+) T lymphocytes, and persist during antiretroviral therapy. Here, we review literature data describing how Nef can be transmitted from HIV-1- infected cells to bystander ones, and the effects of extracellular Nef in different cell types. Overall, large part of experimental evidences supports the idea that extracellular Nef plays a relevant role in AIDS pathogenesis. Hence, efforts focused on the identification of Nef-inhibiting drugs would be of relevance to establish new therapeutic approaches supporting current antiretroviral therapies.


Subject(s)
HIV Infections , HIV-1 , Paracrine Communication , nef Gene Products, Human Immunodeficiency Virus/metabolism , Anti-HIV Agents/pharmacology , Bystander Effect/physiology , Drug Discovery , Exosomes/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , HIV-1/pathogenicity , HIV-1/physiology , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Paracrine Communication/drug effects , Paracrine Communication/physiology
17.
Retrovirology ; 12: 87, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26502902

ABSTRACT

BACKGROUND: Completion of HIV life cycle in CD4(+) T lymphocytes needs cell activation. We recently reported that treatment of resting CD4(+) T lymphocytes with exosomes produced by HIV-1 infected cells induces cell activation and susceptibility to HIV replication. Here, we present data regarding the effects of these exosomes on cells latently infected with HIV-1. RESULTS: HIV-1 latently infecting U937-derived U1 cells was activated upon challenge with exosomes purified from the supernatant of U937 cells chronically infected with HIV-1. This effect was no more detectable when exosomes from cells infected with HIV-1 strains either nef-deleted or expressing a functionally defective Nef were used, indicating that Nef is the viral determinant of exosome-induced HIV-1 activation. Treatment with either TAPI-2, i.e., a specific inhibitor of the pro-TNFα-processing ADAM17 enzyme, or anti-TNFα Abs abolished HIV-1 activation. Hence, similar to what previously demonstrated for the exosome-mediated activation of uninfected CD4(+) T lymphocytes, the Nef-ADAM17-TNFα axis is part of the mechanism of latent HIV-1 activation. It is noteworthy that these observations have been reproduced using: (1) primary CD4(+) T lymphocytes latently infected with HIV-1; (2) exosomes from both primary CD4(+) T lymphocytes and macrophages acutely infected with HIV-1; (3) co-cultures of HIV-1 acutely infected CD4(+) T lymphocytes and autologous lymphocytes latently infected with HIV-1, and (4) exosomes from cells expressing a defective HIV-1. CONCLUSIONS: Our results strongly suggest that latent HIV-1 can be activated by TNFα released by cells upon ingestion of exosomes released by infected cells, and that this effect depends on the activity of exosome-associated ADAM17. These pieces of evidence shed new light on the mechanism of HIV reactivation in latent reservoirs, and might also be relevant to design new therapeutic interventions focused on HIV eradication.


Subject(s)
Exosomes/physiology , HIV-1/physiology , Virus Activation , Virus Latency , ADAM Proteins/antagonists & inhibitors , ADAM17 Protein , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Coculture Techniques , Exosomes/chemistry , Exosomes/metabolism , Humans , Hydroxamic Acids/pharmacology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , U937 Cells , Virus Activation/genetics , Virus Latency/genetics , Virus Replication , nef Gene Products, Human Immunodeficiency Virus/genetics
18.
Virology ; 485: 475-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26363218

ABSTRACT

Adenosine deaminase acting on RNA1 (ADAR1) was previously reported to affect HIV-1 replication. We report data showing that ADAR1 interacts with the HIV-1 p55 Gag protein, the major structural protein of the immature virus capsid. Furthermore, we found that the endogenous ADAR1 is incorporated into virions purified from the supernatant of primary HIV-1-infected CD4(+) T lymphocytes. Additional experiments demonstrated that the expression of the p55 Gag protein is sufficient for ADAR1 incorporation into virus-like particles (VLPs). Overall, our data originally support the evidence that ADAR1 can be part of the cell protein array uploaded in HIV-1 particles.


Subject(s)
Adenosine Deaminase/metabolism , HIV-1/physiology , RNA-Binding Proteins/metabolism , Virion , Adenosine Deaminase/chemistry , Cell Line , Humans , Protein Binding , Protein Interaction Domains and Motifs , RNA-Binding Proteins/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism
19.
Viruses ; 7(3): 1079-99, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25760140

ABSTRACT

We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.


Subject(s)
Drug Carriers/administration & dosage , Exosomes/metabolism , Papillomavirus E7 Proteins/immunology , Papillomavirus Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Papillomavirus E7 Proteins/administration & dosage , Papillomavirus Vaccines/administration & dosage , T-Lymphocytes, Cytotoxic/immunology
20.
Virology ; 478: 27-38, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25705792

ABSTRACT

MicroRNA miR-146a and PLZF are reported as major players in the control of hematopoiesis, immune function and cancer. PLZF is described as a miR-146a repressor, whereas CXCR4 and TRAF6 were identified as miR-146a direct targets in different cell types. CXCR4 is a co-receptor of CD4 molecule that facilitates HIV-1 entry into T lymphocytes and myeloid cells, whereas TRAF6 is involved in immune response. Thus, the role of miR-146a in HIV-1 infection is currently being thoroughly investigated. In this study, we found that PLZF mediates suppression of miR-146a to control increases of CXCR4 and TRAF6 protein levels in human primary CD4(+) T lymphocytes. We show that miR-146a upregulation by AMD3100 treatment or PLZF silencing, decreases CXCR4 protein expression and prevents HIV-1 infection of leukemic monocytic cell line and CD4(+) T lymphocytes. Our findings improve the prospects of developing new therapeutic strategies to prevent HIV-1 entry via CXCR4 by using the PLZF/miR-146a axis.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Expression Regulation , HIV-1/physiology , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/metabolism , Receptors, CXCR4/biosynthesis , Receptors, HIV/biosynthesis , Adult , Humans , Promyelocytic Leukemia Zinc Finger Protein , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...