Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38097163

ABSTRACT

Exposure to stress induced by intermittent repeated social defeat (IRSD) increases vulnerability to the development of cocaine-induced conditioned place preference (CPP) among male mice; however, some defeated mice are resilient to these effects of stress. In the present study we evaluated the effects of vicarious IRSD (VIRSD) in female mice and explored behavioural traits that are potentially predictive of resilience. C57BL/6 female mice (n = 28) were exposed to VIRSD, which consisted of the animals witnessing a short experience of social defeat by a male mouse on postnatal day (PND) 47, 50, 53 and 56. The control group (n = 10) was not exposed to stress. Blood samples were collected on PND 47 and 56 for corticosterone and interleukin-6 determinations. On PND 57-58, female mice performed several behavioural tests (elevated plus maze, hole-board, object recognition, social interaction, TST and splash tests). Three weeks later, the effects of cocaine (1.5 mg/kg) on the CPP paradigm were assessed. VIRSD decreased corticosterone levels (on PND 56), increased interleukin-6 levels, enhanced novelty-seeking, improved recognition memory and induced anxiety- and depression-like symptoms. Control and VIRSD female mice did not acquire CPP, although some stressed individuals with certain behavioural traits - including a high novelty-seeking profile or the development of depression-like behaviour in the splash test shortly after VIRSD - acquired cocaine CPP. Our results confirm that some behavioural traits of female mice are associated with vulnerability or resilience to the long-term effects of social stress on cocaine reward, as previously observed in males.


Subject(s)
Cocaine , Resilience, Psychological , Mice , Male , Female , Animals , Corticosterone , Social Defeat , Interleukin-6 , Mice, Inbred C57BL , Cocaine/pharmacology , Reward , Stress, Psychological
2.
Biomedicines ; 11(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36831038

ABSTRACT

Stress is a critical factor in the development of mood and drug use disorders. The social defeat model is not appropriate for female rodents due to their low level of aggression. Therefore, a robust female model of social stress needs to be developed and validated. The aim of the present study was to unravel the long-lasting effects of vicarious social defeat (VSD) on the conditioned rewarding effects of cocaine and ethanol intake in female mice. Although VSD seems to be a good model for inducing behavioral and physiologic endophenotypes induced by stress, there are no studies to date that characterize the effect of VSD on cocaine or alcohol use. The results confirm that VSD females showed an increase in corticosterone levels after a vicarious experience while also displaying an increase in anxiety- and anhedonic-like behaviors. Three weeks after the last VSD, vicariously defeated female mice showed an increased developed preference for a non-effective dose of cocaine in the conditioned place preference (CPP) paradigm and showed an increase in ethanol intake. Our results suggest that female mice vicariously experience a state of distress through the social observation of others suffering from adverse events, confirming the use of VSD as a valid model to study the response to social stress in females. The fact that VSD in females induced a comparable behavioral phenotype to that observed in physically defeated males could indicate a relationship with the higher rate of psychopathologies observed in women. Notwithstanding, more studies are needed to dissect the neurobiological and behavioral peculiarities of the female response to social stress.

3.
Addict Biol ; 21(1): 87-97, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25219790

ABSTRACT

This study employs an oral operant conditioning paradigm to evaluate the effects of repeated social defeat during adolescence on the reinforcing and motivational actions of ethanol in adult OF1 mice. Social interaction, emotional and cognitive behavioral aspects were also analyzed, and real-time polymerase chain reaction (PCR) experiments were performed to study gene expression changes in the mesocorticolimbic and hypothalamus-hypophysis-adrenal (HHA) axis. Social defeat did not alter anxiety-like behavior in the elevated plus maze or cognitive performance in the passive avoidance and Hebb-Williams tests. A social interaction test revealed depression-like symptoms and social subordination behavior in defeated OF1 mice. Interestingly, social defeat in adolescence significantly increased the number of effective responses, ethanol consumption values and motivation to drink. Finally, real-time PCR analyses revealed that social defeat significantly increased tyrosine hydroxylase and corticotropin-releasing hormone in the ventral tegmental area and paraventricular nucleus, respectively. In contrast, mu-opioid receptor gene expression was decreased in the nucleus accumbens of socially defeated mice. In summary, these findings suggest that exposure to social defeat during adolescence increases vulnerability to the rewarding effects of ethanol without affecting emotional or cognitive performance. The gene expression alterations we have observed in the mesocorticolimbic and HHA axis systems of defeated mice could be related with their increased ethanol consumption. These results endorse future research into pharmacological strategies that modulate these systems for the treatment of social stress-related alcohol consumption problems.


Subject(s)
Alcohol Drinking/genetics , Behavior, Animal , Brain/metabolism , Conditioning, Operant , Gene Expression Profiling , Social Behavior , Stress, Psychological/genetics , Alcohol Drinking/metabolism , Alcohol Drinking/psychology , Animals , Anxiety/genetics , Anxiety/metabolism , Anxiety/psychology , Avoidance Learning , Central Nervous System Depressants/administration & dosage , Corticotropin-Releasing Hormone/genetics , Depression/genetics , Depression/metabolism , Depression/psychology , Ethanol/administration & dosage , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Opioid, mu/genetics , Self Administration , Stress, Psychological/psychology , Tyrosine 3-Monooxygenase/genetics , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...