Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mycoses ; 65(3): 303-311, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34821412

ABSTRACT

Candida and Cryptococcus affect millions of people yearly, being responsible for a wide array of clinical presentations, including life-threatening diseases. Interestingly, most human pathogenic yeasts are not restricted to the clinical setting, as they are also ubiquitous in the environment. Recent studies raise concern regarding the potential impact of agricultural use of azoles on resistance to medical antifungals in yeasts, as previously outlined with Aspergillus fumigatus. Thus, we undertook a narrative review of the literature and provide lines of evidence suggesting that an alternative, environmental route of azole resistance, may develop in pathogenic yeasts, in addition to patient route. However, it warrants sound evidence to support that pathogenic yeasts cross border between plants, animals and humans and that environmental reservoirs may contribute to azole resistance in Candida or other yeasts for humans. As these possibilities could concern public health, we propose a road map for future studies under the One Health perspective.


Subject(s)
Fungicides, Industrial , One Health , Animals , Antifungal Agents/pharmacology , Aspergillus fumigatus , Azoles/pharmacology , Drug Resistance, Fungal , Fungicides, Industrial/pharmacology , Humans , Microbial Sensitivity Tests
2.
Article in English | MEDLINE | ID: mdl-32432048

ABSTRACT

The objectives of this study were to gain further insight on Candida genotype distribution and percentage of clustered isolates between hospitals and to identify potential clusters involving different hospitals and cities. We aim to genotype Candida spp. isolates causing candidemia in patients admitted to 16 hospitals in Spain, Italy, Denmark, and Brazil. Eight hundred and eighty-four isolates (Candida albicans, n = 534; C. parapsilosis, n = 282; and C. tropicalis, n = 68) were genotyped using species-specific microsatellite markers. CDC3, EF3, HIS3, CAI, CAIII, and CAVI were used for C. albicans, Ctrm1, Ctrm10, Ctrm12, Ctrm21, Ctrm24, and Ctrm28 for C. tropicalis, and CP1, CP4a, CP6, and B for C. parapsilosis. Genotypes were classified as singletons (genotype only found once) or clusters (same genotype infecting two or more patients). Clusters were defined as intra-hospital (involving patients admitted to a single hospital), intra-ward (involving patients admitted to the same hospital ward) or widespread (involving patients admitted to different hospitals). The percentage of clusters and the proportion of patients involved in clusters among species, genotypic diversity and distribution of genetic diversity were assessed. Seven hundred and twenty-three genotypes were detected, 78 (11%) being clusters, most of which (57.7%; n = 45/78) were intra-hospital clusters including intra-ward ones (42.2%; n = 19/45). The proportion of clusters was not statistically different between species, but the percentage of patients in clusters varied among hospitals. A number of genotypes (7.2%; 52/723) were widespread (found at different hospitals), comprising 66.7% (52/78) of clusters, and involved patients at hospitals in the same city (n = 21) or in different cities (n = 31). Only one C. parapsilosis cluster was a widespread genotype found in all four countries. Around 11% of C. albicans and C. parapsilosis isolates causing candidemia are clusters that may result from patient-to-patient transmission, widespread genotypes commonly found in unrelated patients, or insufficient microsatellite typing genetic discrimination.


Subject(s)
Candidemia , Antifungal Agents , Brazil/epidemiology , Candida/genetics , Candidemia/epidemiology , Genotype , Humans , Italy/epidemiology , Spain
3.
Med Mycol ; 58(7): 887-895, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32022851

ABSTRACT

The capacity of Candida spp. to form biofilms allows them to attach either to living or inert surfaces, promoting their persistence in hospital environments. In a previous study, we reported strain-to-strain variations in Candida spp. biofilm development, suggesting that some genotypes may be greater biofilm formers than others. In this study, we hypothesize that isolates pertaining to clusters may be found more frequently in the environment due to their ability to form biofilms compared to singleton genotypes. Two hundred and thirty-nine Candida spp. isolates (78 clusters) from candidemia patients admitted to 16 hospitals located in different cities and countries-and the same number of singleton genotypes used as controls-were tested in terms of biofilm formation using the crystal violet and the XTT reduction assays. Candida albicans clusters showed higher biofilm formation in comparison to singleton genotypes (P < .01). The biofilms formed by intra-hospital C. albicans clusters showed higher metabolic activity (P < .05). Furthermore, marked variability was found among species and type of cluster. We observed that the higher the number of isolates, the higher the variability of biofilm production by isolates within the cluster, suggesting that the production of biofilm by isolates of the same genotype is quite diverse and does not depend on the type of cluster studied. In conclusion, candidemia Candida spp. clusters-particularly in the case of C. albicans-show significantly more biomass production and metabolic activity than singleton genotypes.


Subject(s)
Biofilms/growth & development , Candida albicans/growth & development , Candida albicans/genetics , Candida parapsilosis/growth & development , Candida parapsilosis/genetics , Candida tropicalis/growth & development , Candida tropicalis/genetics , Brazil , Denmark , Genetic Variation , Genotype , Humans , Italy , Spain
SELECTION OF CITATIONS
SEARCH DETAIL