Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1256760, 2023.
Article in English | MEDLINE | ID: mdl-37766866

ABSTRACT

Background: FLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT. Methods: Privately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT. Results: Eleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses. Conclusion: This study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients.

2.
Vet Sci ; 10(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37505880

ABSTRACT

Sarcomas are malignant tumors arising from the embryonic mesodermal cell lineage. This group of cancers covers a heterogenous set of solid tumors arising from soft tissues or bone. Many features such as histology, biological behavior and molecular characteristics are shared between sarcomas in humans and dogs, suggesting that human sarcoma research can be informative for canine disease, and that dogs with sarcomas can serve as relevant translational cancer models, to aid in the understanding of human disease and cancer biology. In the present paper, risk factors for the development of sarcoma in dogs are reviewed, with a particular focus on recent advances in clinical genetics, and on the identification of simple and complex genetic risk factors with a comparison with what has been found in human orthologous disease.

3.
Med Phys ; 50(7): 4047-4054, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37190907

ABSTRACT

BACKGROUND: During recent years FLASH radiotherapy (FLASH-RT) has shown promising results in radiation oncology, with the potential to spare normal tissue while maintaining the antitumor effects. The high speed of the FLASH-RT delivery increases the need for fast and precise motion monitoring to avoid underdosing the target. Surface guided radiotherapy (SGRT) uses surface imaging (SI) to render a 3D surface of the patient. SI provides real-time motion monitoring and has a large scanning field of view, covering off-isocentric positions. However, SI has so far only been used for human patients with conventional setup and treatment. PURPOSE: The aim of this study was to investigate the performance of SI as a motion management tool during electron FLASH-RT of canine cancer patients. METHODS: To evaluate the SI system's ability to render surfaces of fur, three fur-like blankets in white, grey, and black were used to imitate the surface of canine patients and the camera settings were optimized for each blanket. Phantom measurements using the fur blankets were carried out, simulating respiratory motion and sudden shift. Respiratory motion was simulated using the QUASAR Respiratory Motion Phantom with the fur blankets placed on the phantom platform, which moved 10 mm vertically with a simulated respiratory period of 4 s. Sudden motion was simulated with an in-house developed phantom, consisting of a platform which was moved vertically in a stepwise motion at a chosen frequency. For sudden measurements, 1, 2, 3, 4, 5, 6, 7, and 10 Hz were measured. All measurements were both carried out at the conventional source-to-surface distance (SSD) of 100 cm, and in the locally used FLASH-RT setup at SSD = 70 cm. The capability of the SI system to reproduce the simulated motion and the sampling time were evaluated. As an initial step towards clinical implementation, the feasibility of SI for surface guided FLASH-RT was evaluated for 11 canine cancer patients. RESULTS: The SI camera was capable of rendering surfaces for all blankets. The deviation between simulated and measured mean peak-to-peak breathing amplitude was within 0.6 mm for all blankets. The sampling time was generally higher for the black fur than for the white and grey fur, for the measurement of both respiratory and sudden motion. The SI system could measure sudden motion within 62.5 ms and detect motion with a frequency of 10 Hz. The feasibility study of the canine patients showed that the SI system could be an important tool to ensure patient safety. By using this system we could ensure and document that 10 out of 11 canine patients had a total vector offset from the reference setup position <2 mm immediately before and after irradiation. CONCLUSIONS: We have shown that SI can be used for surface guided FLASH-RT of canine patients. The SI system is currently not fast enough to interrupt a FLASH-RT beam while irradiating but with the short sampling time sudden motion can be detected. The beam can therefore be held just prior to irradiation, preventing treatment errors such as underdosing the target.


Subject(s)
Electrons , Neoplasms , Humans , Animals , Dogs , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Neoplasms/veterinary , Diagnostic Imaging , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods
4.
Front Oncol ; 11: 658004, 2021.
Article in English | MEDLINE | ID: mdl-34055624

ABSTRACT

FLASH radiotherapy has emerged as a treatment technique with great potential to increase the differential effect between normal tissue toxicity and tumor response compared to conventional radiotherapy. To evaluate the feasibility of FLASH radiotherapy in a relevant clinical setting, we have commenced a feasibility and safety study of FLASH radiotherapy in canine cancer patients with spontaneous superficial solid tumors or microscopic residual disease, using the electron beam of our modified clinical linear accelerator. The setup for FLASH radiotherapy was established using a short electron applicator with a nominal source-to-surface distance of 70 cm and custom-made Cerrobend blocks for collimation. The beam was characterized by measuring dose profiles and depth dose curves for various field sizes. Ten canine cancer patients were included in this initial study; seven patients with nine solid superficial tumors and three patients with microscopic disease. The administered dose ranged from 15 to 35 Gy. To ensure correct delivery of the prescribed dose, film measurements were performed prior to and during treatment, and a Farmer-type ion-chamber was used for monitoring. Treatments were found to be feasible, with partial response, complete response or stable disease recorded in 11/13 irradiated tumors. Adverse events observed at follow-up ranging from 3-6 months were mild and consisted of local alopecia, leukotricia, dry desquamation, mild erythema or swelling. One patient receiving a 35 Gy dose to the nasal planum, had a grade 3 skin adverse event. Dosimetric procedures, safety and an efficient clincal workflow for FLASH radiotherapy was established. The experience from this initial study will be used as a basis for a veterinary phase I/II clinical trial with more specific patient inclusion selection, and subsequently for human trials.

5.
Cancer Res ; 78(13): 3421-3431, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29724721

ABSTRACT

Osteosarcoma is a debilitating bone cancer that affects humans, especially children and adolescents. A homologous form of osteosarcoma spontaneously occurs in dogs, and its differential incidence observed across breeds allows for the investigation of tumor mutations in the context of multiple genetic backgrounds. Using whole-exome sequencing and dogs from three susceptible breeds (22 golden retrievers, 21 Rottweilers, and 23 greyhounds), we found that osteosarcoma tumors show a high frequency of somatic copy-number alterations (SCNA), affecting key oncogenes and tumor-suppressor genes. The across-breed results are similar to what has been observed for human osteosarcoma, but the disease frequency and somatic mutation counts vary in the three breeds. For all breeds, three mutational signatures (one of which has not been previously reported) and 11 significantly mutated genes were identified. TP53 was the most frequently altered gene (83% of dogs have either mutations or SCNA in TP53), recapitulating observations in human osteosarcoma. The second most frequently mutated gene, histone methyltransferase SETD2, has known roles in multiple cancers, but has not previously been strongly implicated in osteosarcoma. This study points to the likely importance of histone modifications in osteosarcoma and highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine osteosarcoma may serve as an excellent model for developing treatment strategies in both species.Significance: Canine osteosarcoma genomics identify SETD2 as a possible oncogenic driver of osteosarcoma, and findings establish the canine model as a useful comparative model for the corresponding human disease. Cancer Res; 78(13); 3421-31. ©2018 AACR.


Subject(s)
Dog Diseases/genetics , Histone-Lysine N-Methyltransferase/genetics , Osteosarcoma/genetics , Animals , DNA Copy Number Variations , DNA Mutational Analysis , Disease Models, Animal , Dog Diseases/pathology , Dogs , Female , Genetic Predisposition to Disease , Humans , Male , Mutation , Osteosarcoma/pathology , Tumor Suppressor Protein p53/genetics , Exome Sequencing
6.
Cell Metab ; 23(5): 893-900, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27157046

ABSTRACT

Sequencing of candidate genes for obesity in Labrador retriever dogs identified a 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12%. The deletion disrupts the ß-MSH and ß-endorphin coding sequences and is associated with body weight (per allele effect of 0.33 SD), adiposity, and greater food motivation. Among other dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food motivation. The mutation is significantly more common in Labrador retrievers selected to become assistance dogs than pets. In conclusion, the deletion in POMC is a significant modifier of weight and appetite in Labrador retrievers and FCRs and may influence other behavioral traits.


Subject(s)
Appetite/genetics , Body Weight/genetics , Gene Deletion , Obesity/genetics , Pro-Opiomelanocortin/genetics , Adiposity/genetics , Amino Acid Sequence , Animals , Base Pairing , Base Sequence , COS Cells , Chlorocebus aethiops , Dogs , Feeding Behavior , Genotype , Pro-Opiomelanocortin/chemistry , Pro-Opiomelanocortin/metabolism , Receptors, Melanocortin/metabolism , beta-MSH/metabolism
7.
PLoS Genet ; 11(11): e1005647, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26588071

ABSTRACT

Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10-16), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT.


Subject(s)
Dog Diseases/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Germ-Line Mutation , Mastocytoma/veterinary , Alternative Splicing , Animals , Dogs , GTP-Binding Protein alpha Subunit, Gi2/genetics , Mastocytoma/genetics , Polymorphism, Single Nucleotide
8.
Mol Cancer Ther ; 8(12): 3244-54, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19952120

ABSTRACT

The two-step transcriptional activation (TSTA) mechanism in gene therapy amplifies cell type-specific promoter activity, allowing for increased levels of gene expression in target tissues. In this system, the specific promoter drives expression of a strong transcriptional activator that binds to DNA target sequences located upstream from a second promoter controlling the expression of the therapeutic gene. The majority of previous studies have exploited a fusion between the DNA binding domain of the yeast transcriptional activator Gal4 fused to the VP16 activation domain of herpes simplex virus 1 as the transcriptional activator. In this report, an alternative to this system is described based on a fusion protein containing the DNA binding domain of the bovine papillomavirus 1 transcriptional activator E2 fused to VP16 that induces target gene expression following binding to a minimal bovine papillomavirus 4 promoter containing upstream E2 binding sites and only 3 bp of promoter sequence upstream from the TATA box. VP16-E2 is superior to Gal4-VP16 as the transcriptional activator in a TSTA system driven by either of the two potentially cancer-specific promoters telomerase RNA and telomerase reverse transcriptase in several cell lines. Results also suggest that this new system has an advantage in epithelial cells and is therefore ideal for potential targeting of carcinomas. By incorporating the TRAIL gene as a transgene in the VP16-E2 TSTA system, selective killing of telomerase-positive cells occurs. We propose that our new system should be considered in future TSTA, particularly when targeting epithelial-derived cells.


Subject(s)
Epithelial Cells/metabolism , Genetic Therapy/methods , Transcriptional Activation , Binding Sites/genetics , Bovine papillomavirus 1/genetics , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/genetics , Humans , Promoter Regions, Genetic/genetics , RNA/genetics , Recombinant Fusion Proteins/genetics , Reproducibility of Results , TNF-Related Apoptosis-Inducing Ligand/genetics , Telomerase/genetics , Trans-Activators/genetics , Transfection , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...