Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 236: 124318, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31319310

ABSTRACT

The present paper deals with the atenolol (ATL) degradation by advanced anodic oxidation using a boron-doped diamond anode supported on niobium (Nb/BDD). Cyclic voltammetry performed on this electrode revealed that it presents a high quality (diamond-sp3/sp2-carbon ratio), high potential for OER and that ATL can be oxidized directly and/or indirectly by the electrogenerated oxidants, such as hydroxyl radicals, persulfate ions and sulfate radicals. Electrolysis experiments demonstrated that ATL degradation and mineralization follow a mixed (first and zero) order kinetics depending on the applied current density. At high applied current densities, the amount of OH radicals is very high and the overall reaction is limited by the transport of ATL (pseudo first-order kinetics) whereas for low applied current densities, the rate of OH radicals generation at the anode is slower than the rate of arrival of ATL molecules (pseudo-zero order kinetics). Estimated values of kzero and kfirst based on the assumption of pseudo-zero or pseudo-first order kinetics were carried oud as a function of the supporting electrolyte concentration, indicating that both parameters increased with its concentration due the higher production of sulfate reactive species that play an important role in degradation. Finally, MCE increased with the decrease of current density, due to the lower amount of OH present in solution, since this species could be rapidly wasted in parasitic reactions; and the increase of sulfate concentration due to the more efficient production of persulfate.


Subject(s)
Atenolol/therapeutic use , Electrolysis/methods , Niobium/chemistry , Atenolol/pharmacology , Electrodes
2.
Environ Technol ; 40(26): 3456-3466, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29770731

ABSTRACT

Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted electrochemical oxidation (PEO), was applied, aiming the mineralization of microcontaminants such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence of the individual contributions of electrochemical oxidation (EO) and the UV-base processes on the hybrid process (PEO) was analysed. Results showed that AMX and NOR presented higher mineralization rate under direct photolysis than AZI due to the high absorption of UV radiation. For the EO processes, a low mineralization was found for all antibiotics, what was associated to a mass-transport limitation related to the low concentration of contaminants (200 µg/L). Besides that, an increase in mineralization was found, when heterogeneous photocatalysis and EO are compared, due to the influence of UV radiation, which overcomes the mass-transport limitations. Although the UV-based processes control the reaction pathway that leads to mineralization, the best results to mineralize the antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of the processes that constitute them. A higher mineralization was achieved, which is an important and useful finding to avoid the discharge of microcontaminants in the environment.


Subject(s)
Ultraviolet Rays , Water Pollutants, Chemical , Anti-Bacterial Agents , Hydrogen Peroxide , Oxidation-Reduction , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...