Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 662, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770487

ABSTRACT

Heating and cooling in buildings accounts for over 20% of total energy consumption in China. Therefore, it is essential to understand the thermal requirements of building occupants when establishing building energy codes that would save energy while maintaining occupants' thermal comfort. This paper introduces the Chinese thermal comfort dataset, established by seven participating institutions under the leadership of Xi'an University of Architecture and Technology. The dataset comprises 41,977 sets of data collected from 49 cities across five climate zones in China over the past two decades. The raw data underwent careful quality control procedure, including systematic organization, to ensure its reliability. Each dataset contains environmental parameters, occupants' subjective responses, building information, and personal information. The dataset has been instrumental in the development of indoor thermal environment evaluation standards and energy codes in China. It can also have broader applications, such as contributing to the international thermal comfort dataset, modeling thermal comfort and adaptive behaviors, investigating regional differences in indoor thermal conditions, and examining occupants' thermal comfort responses.

2.
Indoor Air ; 32(1): e12926, 2022 01.
Article in English | MEDLINE | ID: mdl-34418161

ABSTRACT

In a field study conducted in office settings in Sydney, Australia, background survey and right-here-right-now thermal comfort questionnaires were collected from a sample of office workers. Indoor environmental observations, including air temperature, mean radiant temperature, air velocity, and relative humidity, were also recorded and matched with each questionnaire according to the time and location. During exploratory data analyses, we observed that female subjects aged over 40 and 50 or younger registered significantly warmer sensations than other subjects, male and female, from other age ranges. To further explore this phenomenon, the sample of building occupants was classified into two groups-women of perimenopausal age (over 40 and 50 or younger) while the remaining respondents served as a reference group for comparison. Women in the perimenopausal age range demonstrated an increased perception of warmth (p < 0.01) and expressed thermal dissatisfaction more frequently (p < 0.01) than the reference group respondents who were exposed to the same indoor environmental conditions. Furthermore, women of perimenopausal age also expressed preference for cooler thermal environments, that is, lower air temperature (p < 0.01) and greater air movement (p<0.01) than the reference group, and their thermal neutrality (ie, the room temperature corresponding to a neutral thermal sensation) was approximately 2°C cooler than that of the reference group (20.7°C vs 22.4°C). A potential physiological explanation for the distinct thermal perception of women aged over 40 and 50 or younger observed in this study could stem from menopausal symptoms-the presence of hot flushes and dysregulation of the thermoregulatory system.


Subject(s)
Air Pollution, Indoor , Female , Humans , Humidity , Male , Menopause , Surveys and Questionnaires , Temperature , Thermosensing
3.
J Appl Physiol (1985) ; 125(3): 723-736, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29878872

ABSTRACT

The ability of hands and feet to convey skin thermal sensations is an important contributor to our experience of the surrounding world. Surprisingly, the detailed topographical distribution of warm and cold thermosensitivity across hands and feet has not been mapped, although sensitivity maps exist for touch and pain. Using a recently developed quantitative sensory test, we mapped warm and cold thermosensitivity of 103 skin sites over glabrous and hairy skin of hands and feet in male (M; 30.2 ± 5.8 yr) and female (F; 27.7 ± 5.1 yr) adults matched for body surface area (M: 1.77 ± 0.2 m2; F: 1.64 ± 0.1 m2; P = 0.155). Findings indicated that warm and cold thermosensitivity varies by fivefold across glabrous and hairy skin of hands and feet and that hands (warm/cold sensitivity: 1.25/2.14 vote/°C) are twice as sensitive as the feet (warm/cold sensitivity: 0.51/0.99 vote/°C). Opposite to what is known for touch and pain sensitivity, we observed a characteristic distal-to-proximal increase in thermosensitivity over both hairy and glabrous skin (i.e., from fingers and toes to body of hands and feet), and found that hairy skin is more sensitive than glabrous. Finally, we show that body surface area-matched men and women presented small differences in thermosensitivity and that these differences are constrained to glabrous skin only. Our high-density thermosensory micromapping provides the most detailed thermosensitivity maps of hands and feet in young adults available to date. These maps offer a window into peripheral and central mechanisms of thermosensory integration in humans and will help guide future developments in smart skin and sensory neuroprostheses, in wearable, energy-efficient personal comfort systems, and in sport and protective clothing. NEW & NOTEWORTHY We provide the most detailed thermosensitivity maps across glabrous and hairy skin of hands and feet in men and women available to date. Our maps show that thermosensitivity varies by fivefold across hands and feet, distal regions (e.g., fingers, toes) are less sensitive than proximal (e.g., palm, sole), hands are twice as sensitive as feet, and men and women present small thermosensitivity differences. These findings will help guide developments in sensory neuroprostheses, wearable comfort systems, and sport/protective clothing.


Subject(s)
Foot/innervation , Hand/innervation , Skin/innervation , Thermosensing/physiology , Adult , Algorithms , Cold Temperature , Female , Hair , Hot Temperature , Humans , Male , Sex Characteristics , Toes/innervation , Young Adult
4.
J Neurophysiol ; 117(4): 1797-1806, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28148644

ABSTRACT

Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm's glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors' activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5-34.9°C (Pearson r = 0.94; P < 0.001). It falls within the cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology.NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32-34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature integration. Also, we have developed from vision research a new quantitative test addressing the balance in activity of cutaneous cold and warm thermoreceptors. This could have important clinical (assessment of somatosensory abnormalities in neurological disease) and applied (design of personal comfort systems) implications.


Subject(s)
Sensory Thresholds/physiology , Signal Detection, Psychological/physiology , Skin Temperature/physiology , Skin/innervation , Adult , Analysis of Variance , Female , Humans , Male , Physical Stimulation , Psychophysics , Temperature
5.
Int J Biometeorol ; 60(7): 1051-64, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26542016

ABSTRACT

The assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order. The ranges of variability in the total body BMR was 6.5 % relative to the lowest value, with a mean of 84.3 ± 2 W, and in the BCO, it was 8 % with a mean of 4.70 ± 0.13 l/min. The least variability among the body regions is seen in the combined torso (shoulders, thorax, and abdomen: ±7.8 % BMR and ±5.9 % BBPR) and in the combined head (head, face, and neck ±9.9 % BMR and ±10.9 % BBPR), determined by the ratio of the standard deviation to the mean. Much more variability is apparent in the extremities with the most showing in the BMR of the feet (±117 %), followed by the BBPR in the arms (±61.3 %). In the tissue layers, most of the bone layers were assigned zero BMR and BBPR, except in the shoulders and in the extremities that were assigned non-zero values in a number of models. The next lowest values were assigned to the fat layers, with occasional zero values. Skin basal values were invariably non-zero but involved very low values in certain models, e.g., BBPR in the feet and the hands. Muscle layers were invariably assigned high values with the highest found in the thorax, abdomen, and legs. The brain, lung, and viscera layers were assigned the highest of all values of both basal quantities with those of the brain layers showing rather tight ranges of variability in both basal quantities. Average basal values of the "time-seasoned" models presented in this study could be useful as a first step in future modeling efforts subject to appropriate adjustment of values to conform to most recently available and reliable data.


Subject(s)
Body Temperature Regulation , Models, Biological , Basal Metabolism , Cardiac Output , Humans
7.
PLoS One ; 10(5): e0128022, 2015.
Article in English | MEDLINE | ID: mdl-26024222

ABSTRACT

Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.


Subject(s)
Air Microbiology , Air Pollution, Indoor/analysis , Microbial Consortia/genetics , Aerosols , Air/analysis , Bacteria/genetics , Environmental Monitoring/methods , Fungi/genetics , Humans
8.
Int J Biometeorol ; 51(5): 349-60, 2007 May.
Article in English | MEDLINE | ID: mdl-17235538

ABSTRACT

Office workers' preferences for air movement have been extracted from a database of indoor environmental quality surveys performed in over 200 buildings. Dissatisfaction with the amount of air motion is very common, with too little air movement cited far more commonly than too much air movement. Workers were also surveyed in a detailed two-season study of a single naturally ventilated building. About one-half the building's population wanted more air movement and only 4% wanted less. This same ratio applied when the air movement in workspaces was higher than 0.2 m/s, the de facto draft limit in the current ASHRAE and ISO thermal environment standards. Preference for "less air motion" exceeded that for "more" only at thermal sensations of -2 (cool) or colder. These results raise questions about the consequences of the ASHRAE and ISO standards' restrictions on air movement, especially for neutral and warm conditions.


Subject(s)
Air Movements , Workplace , Air Pollution, Indoor , Building Codes , Data Collection , Databases, Factual , Humans , Seasons , Sensation , Temperature , Ventilation
9.
Indoor Air ; 14 Suppl 8: 65-74, 2004.
Article in English | MEDLINE | ID: mdl-15663461

ABSTRACT

UNLABELLED: Building occupants are a rich source of information about indoor environmental quality and its effect on comfort and productivity. The Center for the Built Environment has developed a Web-based survey and accompanying online reporting tools to quickly and inexpensively gather, process and present this information. The core questions assess occupant satisfaction with the following IEQ areas: office layout, office furnishings, thermal comfort, indoor air quality, lighting, acoustics, and building cleanliness and maintenance. The survey can be used to assess the performance of a building, identify areas needing improvement, and provide useful feedback to designers and operators about specific aspects of building design features and operating strategies. The survey has been extensively tested and refined and has been conducted in more than 70 buildings, creating a rapidly growing database of standardized survey data that is used for benchmarking. We present three case studies that demonstrate different applications of the survey: a pre/post analysis of occupants moving to a new building, a survey used in conjunction with physical measurements to determine how environmental factors affect occupants' perceived comfort and productivity levels, and a benchmarking example of using the survey to establish how new buildings are meeting a client's design objectives. PRACTICAL IMPLICATIONS: In addition to its use in benchmarking a building's performance against other buildings, the CBE survey can be used as a diagnostic tool to identify specific problems and their sources. Whenever a respondent indicates dissatisfaction with an aspect of building performance, a branching page follows with more detailed questions about the nature of the problem. This systematically collected information provides a good resource for solving indoor environmental problems in the building. By repeating the survey after a problem has been corrected it is also possible to assess the effectiveness of the solution.


Subject(s)
Air Pollution, Indoor , Benchmarking , Internet , Facility Design and Construction , Health Surveys , Humans , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...