Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurocrit Care ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009939

ABSTRACT

BACKGROUND: The study investigated the effectiveness of low-frequency sampling in detecting alterations in cerebrovascular reactivity (CVR) associated with changes in intracranial pressure (ICP) in patients with traumatic brain injury (TBI) across different age groups. The primary objective was to investigate an ICP threshold that indicates a decrease in CVR as evidenced by a significant increase in the ultra-low-frequency pressure reactivity index (UL-PRx). Additionally, the study aimed to develop an age-based categorization method for patients with TBI to investigate the differences between these ICP thresholds in different age groups. METHODS: In this retrospective analysis, data from 263 patients with TBI were prospectively collected. ICP and mean arterial pressure were extracted from the hospital database at 5-min intervals. Demographic details, clinical presentation, computed tomography scans, neurosurgical interventions, and 12-months outcome were recorded. ICP versus UL-PRx values were categorized into ICP bins and graphically represented with boxplots for each age group, illustrating how as ICP values rise, there is a bin (age-tailored ICP [AT-ICP]) beyond which UL-PRx shows a sudden increase, indicating CVR loss. Homogeneous age groups were established to obtain a consistent AT-ICP threshold. The discriminatory ability of the AT-ICP thresholds was compared with the guideline-recommended thresholds by calculating the area under the Receiver Operating Characteristic curve of the ICP-derived indices (dose above threshold, and the hourly dosage above threshold). RESULTS: Age groups 0-5, 6-20, 21-60, 61-70, and 71-85 years were the best age subdivisions, corresponding to AT-ICP thresholds of 20, 30, 35, 25, and 30 mmHg, respectively. The AT-ICP thresholds exhibited better discriminative ability compared with the guideline-recommended thresholds. CONCLUSIONS: The AT-ICP thresholds offer a novel approach for estimating CVR impairment and the developed method represents an alternative solution to address the age stratification issue in patients with TBI.

2.
Front Neurol ; 14: 1021020, 2023.
Article in English | MEDLINE | ID: mdl-37090991

ABSTRACT

Background: Older age is a well-known risk factor for unfavorable outcome in traumatic brain injury (TBI). However, many older people with TBI respond well to aggressive treatments, suggesting that chronological age and TBI severity alone may be inadequate prognostic markers. Frailty is an age-related homeostatic imbalance of loss of physiologic and cognitive reserve resulting in both limitation in autonomy of activities of daily living and vulnerability to adverse events. We hypothesized that frailty would be associated with 6-month adverse functional outcome in older people affected by moderate or severe TBI. Methods: This was a single-center prospective observational study. We enrolled consecutive patients aged ≥65 years after TBI with Glasgow Coma Scale ≤13 and admitted to our Neurosurgical Intensive Care Unit. Frailty was evaluated by Clinical Frailty Scale (CFS). Relationships between TBI severity, frailty and extended Glasgow Outcome Scale (GOSE) at 6-month were evaluated. Results: Sixty patients were studied, 65% were males, their age was 76 years (IQR 70-80) and their admission GCS was 8 (IQR 6-11) with a GCS motor score of 5 (IQR 4-5). Twenty eight were vulnerable-frail (defined as CFS ≥ 4). Vulnerable-frail patients showed greater 6-month mortality and unfavorable outcome compared to non-frail [87% vs. 30% OR and 95% CI: 15.7 (3.9-55.2), p < 0.0001 and 92% vs. 51% OR and 95% CI: 9.9 (2.1-46.3), p = 0.002]. In univariate analysis patients with unfavorable outcome were more frequently male and vulnerable-frail, had a higher prevalence of pre-existing neurodegenerative disease, abnormal pupil, lower GCS and had worst CT scan characteristics. At multivariate analysis, only CFS ≥ 4 and traumatic subarachnoid hemorrhage remained associated to 6-month outcome. Conclusion: Frailty was associated with 6 month-outcome, suggesting that the pre-injury functional status could represent an additional indicator to stratify patient's severity and to predict outcome.

3.
J Cereb Blood Flow Metab ; 33(8): 1182-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23611870

ABSTRACT

The role of tumor necrosis factor (TNF) and its receptors after traumatic brain injury (TBI) remains unclear. We evaluated the effects of genetic deletion of either p55 or p75 TNF receptor on neurobehavioral outcome, histopathology, DNA damage and apoptosis-related cell death/survival gene expression (bcl-2/bax), and microglia/macrophage (M/M) activation in wild-type (WT) and knockout mice after TBI. Injured p55 (-/-) mice showed a significant attenuation while p75 (-/-) mice showed a significant worsening of sensorimotor deficits compared with WT mice over 4 weeks postinjury. At the same time point, contusion volume in p55 (-/-) mice (11.1±3.3 mm(3)) was significantly reduced compared with WT (19.7±3.4 mm(3)) and p75 (-/-) mice (20.9±3.2 mm(3)). At 4 hours postinjury, bcl-2/bax ratio mRNA expression was increased in p55 (-/-) compared with p75 (-/-) mice and was associated with reduced DNA damage terminal deoxynucleotidyl transferaseYmediated dUTP nick end labeling (TUNEL-positivity), reduced CD11b expression and increased Ym1 expression at 24 hours postinjury in p55 (-/-) compared with p75 (-/-) mice, indicative of a protective M/M response. These data suggest that TNF may exacerbate neurobehavioral deficits and tissue damage via p55 TNF receptor whose inhibition may represent a specific therapeutic target after TBI.


Subject(s)
Brain Injuries/genetics , Brain Injuries/metabolism , Gene Deletion , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor Decoy Receptors/genetics , Tumor Necrosis Factor Decoy Receptors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Algorithms , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/physiology , Brain Injuries/pathology , Cell Death/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , DNA Damage , Immunohistochemistry , In Situ Nick-End Labeling , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Psychomotor Performance/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Tumor Necrosis Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...