Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2731, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553480

ABSTRACT

Cement hydration is crucial for the strength development of cement-based materials; however, the mechanism that underlies this complex reaction remains poorly understood at the molecular level. An in-depth understanding of cement hydration is required for the development of environmentally friendly cement and consequently the reduction of carbon emissions in the cement industry. Here, we use molecular dynamics simulations with a reactive force field to investigate the initial hydration processes of tricalcium silicate (C3S) and dicalcium silicate (C2S) up to 40 ns. Our simulations provide theoretical support for the rapid initial hydration of C3S compared to C2S at the molecular level. The dissolution pathways of calcium ions in C3S and C2S are revealed, showing that, two dissolution processes are required for the complete dissolution of calcium ions in C3S. Our findings promote the understanding of the calcium dissolution stage and serve as a valuable reference for the investigation of the initial cement hydration.

2.
Nat Commun ; 14(1): 7979, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042823

ABSTRACT

The Calcium Silicate Hydrate (C-S-H) nucleation is a crucial step during cement hydration and determines to a great extent the rheology, microstructure, and properties of the cement paste. Recent evidence indicates that the C-S-H nucleation involves at least two steps, yet the underlying atomic scale mechanism, the nature of the primary particles and their stability, or how they merge/aggregate to form larger structures is unknown. In this work, we use atomistic simulation methods, specifically DFT, evolutionary algorithms (EA), and Molecular Dynamics (MD), to investigate the structure and formation of C-S-H primary particles (PPs) from the ions in solution, and then discuss a possible formation pathway for the C-S-H nucleation. Our simulations indicate that even for small sizes the most stable clusters encode C-S-H structural motifs, and we identified a C4S4H2 cluster candidate to be the C-S-H basic building block. We suggest a formation path in which small clusters formed by silicate dimers merge into large elongated aggregates. Upon dehydration, the C-S-H basic building blocks can be formed within the aggregates, and eventually crystallize.

3.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37096855

ABSTRACT

In this work, we present ænet-PyTorch, a PyTorch-based implementation for training artificial neural network-based machine learning interatomic potentials. Developed as an extension of the atomic energy network (ænet), ænet-PyTorch provides access to all the tools included in ænet for the application and usage of the potentials. The package has been designed as an alternative to the internal training capabilities of ænet, leveraging the power of graphic processing units to facilitate direct training on forces in addition to energies. This leads to a substantial reduction of the training time by one to two orders of magnitude compared to the central processing unit implementation, enabling direct training on forces for systems beyond small molecules. Here, we demonstrate the main features of ænet-PyTorch and show its performance on open databases. Our results show that training on all the force information within a dataset is not necessary, and including between 10% and 20% of the force information is sufficient to achieve optimally accurate interatomic potentials with the least computational resources.

4.
IUCrJ ; 5(Pt 6): 706-715, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30443355

ABSTRACT

This paper reports on the polymorphism of 2-propyl-1H-benzimidazole (2PrBzIm) induced by temperature change. Upon heating, an irreversible reconstructive-type phase transition at T = 384 K from the ordered form I (P212121) to a new polymorph, form II HT (Pcam), was observed. The structural transformation between forms I and II involves significant changes in the crystal packing, as well as a key conformational variation around the propyl chain of the molecule. After the first irreversible phase transition, the II HT form undergoes two further (reversible) phase transitions upon cooling at 361 K (II RT) and 181 K (II LT). All three phases (forms II HT, II RT and II LT) have almost identical crystal packing and, given the reversibility of the conversions as a function of temperature, they are referred to as form II temperature phases. They differ, however, with respect to conformational variations around the propyl chain of 2PrBzIm. Energy calculations of the gas-phase conformational energy landscape of this compound about its flexible bonds allowed us to classify the observed conformational variations of all forms into changes and adjustments of conformers. This reveals that forms I and II are related by conformational change, and that two of the form II phases (HT and RT) are related by conformational adjustment, whilst the other two (RT and LT) are related by conformational change. We introduce the term 'conformational phases' for different crystal phases with almost identical packing but showing changes in conformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...