Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Rev ; 320(1): 58-82, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37455333

ABSTRACT

Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/metabolism , Neoplasms/therapy , Antibodies
2.
Blood Adv ; 6(14): 4107-4121, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35561310

ABSTRACT

Exploring the repertoire of peptides presented on major histocompatibility complexes (MHCs) helps identify targets for immunotherapy in many hematologic malignancies. However, there is a paucity of such data for diffuse large B-cell lymphomas (DLBCLs), which might be explained by the profound downregulation of MHC expression in many DLBCLs, and in particular in the enhancer of zeste homolog 2 (EZH2)-mutated subgroup. Epigenetic drug treatment, especially in the context of interferon-γ (IFN-γ), restored MHC expression in DLBCL. In DLBCL, peptides presented on MHCs were identified via mass spectrometry after treatment with tazemetostat or decitabine alone or in combination with IFN-γ. Such treatment synergistically increased the expression of MHC class I surface proteins up to 50-fold and the expression of class II surface proteins up to threefold. Peptides presented on MHCs increased to a similar extent for both class I and class II MHCs. Overall, these treatments restored the diversity of the immunopeptidome to levels described in healthy B cells for 2 of 3 cell lines and allowed the systematic search for new targets for immunotherapy. Consequently, we identified multiple MHC ligands from the regulator of G protein signaling 13 (RGS13) and E2F transcription factor 8 (E2F8) on different MHC alleles, none of which have been described in healthy tissues and therefore represent tumor-specific MHC ligands that are unmasked only after drug treatment. Overall, our results show that EZH2 inhibition in combination with decitabine and IFN-γ can expand the repertoire of MHC ligands presented on DLBCLs by revealing suppressed epitopes, thus allowing the systematic analysis and identification of new potential immunotherapy targets.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , RGS Proteins , Decitabine/therapeutic use , Enhancer of Zeste Homolog 2 Protein/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma , Ligands , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Peptides/metabolism
3.
Blood ; 140(8): 861-874, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35427421

ABSTRACT

Target identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene. CAR T cells directed against the ALNEQIARL:HLA-A*02 complex exhibited high sensitivity and specificity for recognition and killing of multiple cancer types, especially those of hematologic origin, and were efficacious in mouse models against a human leukemia and a solid tumor. In contrast, no toxicities toward resting or activated healthy leukocytes as well as hematopoietic stem cells were observed. This shows how MS can inform the design of broadly reactive therapeutic T-cell receptor mimic CAR T-cell therapies that can target multiple cancer types currently not druggable by small molecules, conventional CAR T cells, T cells, or antibodies.


Subject(s)
Hematologic Neoplasms , Neoplasms , Animals , Antibodies/metabolism , Cytoskeletal Proteins/metabolism , HLA-A Antigens , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/therapy , Humans , Immunotherapy, Adoptive/methods , Mice , Receptors, Antigen, T-Cell , T-Lymphocytes
4.
Oncoimmunology ; 10(1): 1916243, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34104540

ABSTRACT

Cyclin dependent kinase 4/6 inhibitors (CDK4/6i) lead to cell-cycle arrest but also trigger T cell-mediated immunity, which might be mediated by changes in human leukocyte antigen (HLA) ligands. We investigated the effects of CDK4/6i, abemaciclib and palbociclib, on the immunopeptidome at nontoxic levels in breast cancer cell lines by biochemical identification of HLA ligands followed by network analyses. This treatment led to upregulation of HLA and revealed hundreds of induced HLA ligands in breast cancer cell lines. These new ligands were significantly enriched for peptides derived from proteins involved in the "G1/S phase transition of cell cycle" including HLA ligands from CDK4/6, Cyclin D1 and the 26S regulatory proteasomal subunit 4 (PSMC1). Interestingly, peptides from proteins targeted by abemaciclib and palbociclib, were predicted to be the most likely to induce a T cell response. In strong contrast, peptides induced by solely one of the drugs had a lower T cell recognition score compared to the DMSO control suggesting that the observed effect is class dependent. This general hypothesis was exemplified by a peptide from PSMC1 which was among the HLA ligands with highest prediction scores and which elicited a T cell response in healthy donors. Overall, these data demonstrate that CDK4/6i treatment gives rise to drug-induced HLA ligands from G1/S phase transition, that have the highest chance for being recognized by T cells, thus providing evidence that inhibition of a distinct cellular process leads to increased presentation of the involved proteins that may be targeted by immunotherapeutic agents.


Subject(s)
Cyclin-Dependent Kinase 6 , Neoplasms , Cyclin-Dependent Kinase 4 , Humans , Immunotherapy , Ligands , Protein Kinase Inhibitors
5.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: mdl-32897882

ABSTRACT

Identification of MHC class I-bound peptides by immunopurification of MHC complexes and subsequent analysis by mass spectrometry is crucial for understanding T cell immunology and immunotherapy. Investigation of the steps for the MHC ligand isolation process revealed biases in widely used isolation techniques toward peptides of lower hydrophobicity. As MHC ligand hydrophobicity correlates positively with immunogenicity, identification of more hydrophobic MHC ligands could potentially lead to more effective isolation of immunogenic peptides as targets for immunotherapies. We solved this problem by use of higher concentrations of acetonitrile for the separation of MHC ligands and their respective complexes. This increased overall MHC ligand identifications by 2-fold, increased detection of cancer germline antigen-derived peptides by 50%, and resulted in profound variations in isolation efficacy between different MHC alleles correlating with the hydrophobicity of their anchor residues. Overall, these insights enabled a more complete view of the immunopeptidome and overcame a systematic underrepresentation of these critical MHC ligands of high hydrophobicity.


Subject(s)
Acetonitriles/chemistry , Antigen Presentation/immunology , Chromatography, Affinity/methods , Histocompatibility Antigens Class I/metabolism , Leukemia, Myeloid, Acute/immunology , Peptide Fragments/isolation & purification , Acetonitriles/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Ligands , Peptide Fragments/immunology , Peptide Fragments/metabolism , Tumor Cells, Cultured
6.
J Proteomics ; 228: 103921, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32758705

ABSTRACT

Characterization of MHC-bound peptides by mass spectrometry (MS) is an essential technique for immunologic studies. Many efforts have been made to quantify the number of MHC-presented ligands by MS and to define the limits of detection of a specific MHC ligand. However, these experiments are often complex and comparisons across different laboratories are challenging. Therefore, we compared and orthogonally validated quantitation of peptide:MHC complexes by radioimmunoassay and flow cytometry using TCR mimic antibodies in three model systems to establish a method to control the experimental input of peptide MHC:complexes for MS analysis. Following isolation of MHC-bound peptides we identified and quantified an MHC ligand of interest with high correlation to the initial input. We found that the diversity of the presented ligandome, as well as the peptide sequence itself affected the detection of the target peptide. Furthermore, results were applicable from these model systems to unmodified cell lines with a tight correlation between HLA-A*02 complex input and the number of identified HLA-A*02 ligands. Overall, this framework provides an easily accessible experimental setup that offers the opportunity to control the peptide:MHC input and in this way compare immunopeptidome experiments not only within but also between laboratories, independent of their experimental approach. SIGNIFICANCE: Although immunopeptidomics is an essential tool for the characterization of MHCbound peptides on the cell surface, there are no easily applicable established protocols available that allow comparison of immunopeptidome experiments across laboratories. Here, we demonstrate that controlling the peptide:MHC input for immunopurification and LC-MS/MS experiments by flow cytometry in pre-defined model systems allows the generation of qualitative and quantitative data that can easily be compared between investigators, independently of their methods for MHC ligand isolation for MS.


Subject(s)
Laboratories , Tandem Mass Spectrometry , Chromatography, Liquid , Ligands , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...