Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 25(3): 45, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396188

ABSTRACT

In this study, dry dispersion laser diffraction was used to study the dispersibility of spheronized agglomerate formulations and identify geometric particle size metrics that correlated well with aerodynamic particle size distribution (APSD). Eleven unique batches of agglomerates were prepared for both laser diffraction and cascade impaction testing. Correlations between the particle size distribution (PSD) and aerodynamic particle size distribution (APSD) metrics for the eleven agglomerate batches were determined in a semi-empirical manner. The strongest correlation between APSD and PSD was observed between the impactor-sized mass (%ISM) and the cumulative PSD fraction <14.5 µm. The strongest correlation with fine particle fraction (FPF) was observed with the cumulative PSD fraction <0.99 micron (R-squared = 0.974). In contrast to the other APSD metrics, good correlations were not found between the mass median aerodynamic diameter (MMAD) and the cumulative PSD fractions. Overall, the implementation of laser diffraction as a surrogate for cascade impaction has the potential to streamline product development. Laser diffraction measurements offer savings in labor and turnaround time compared to cascade impaction.


Subject(s)
Dry Powder Inhalers , Lasers , Aerosols , Drug Compounding , Particle Size , Administration, Inhalation , Powders
2.
Eur J Pharm Biopharm ; 145: 12-26, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31622652

ABSTRACT

A major shortcoming of drug nanocomposites as compared with amorphous solid dispersions (ASDs) is their limited supersaturation capability in dissolution media. Here, we prepared drug hybrid nanocrystal-amorphous solid dispersions (HyNASDs) and compare their performance to ASDs. A wet-milled griseofulvin (GF, BCS II drug) nanosuspension and a GF solution, both containing the same dissolved polymer-surfactant (SDS: sodium dodecyl sulfate) with 1:1 and 1:3 GF:polymer mass ratios, were spray-dried. Hydroxypropyl cellulose (HPC) and Soluplus (Sol) were used as matrix-forming polymers. XRPD, DSC, and Raman spectroscopy reveal that ASDs were formed upon spray-drying the solution-based feed, whereas nanocomposites and nanocomposites with >10% amorphous content, HyNASDs, were formed with the nanosuspension-based feed. Sol provided higher GF relative supersaturation, up to 180% and 360% for HyNASDs and ASDs, respectively, in the dissolution tests than HPC (up to 50% for both) owing to Sol's stronger intermolecular interactions and miscibility with GF and its recrystallization inhibition. Besides the higher kinetic solubility of GF in Sol, presence of GF nanoparticles vs. micron-sized particles in the nanocomposites enabled fast supersaturation. This study demonstrates successful preparation of fast supersaturating (190% within 20 min) HyNASDs, which renders nanoparticle formulations competitive to ASDs in bioavailability enhancement of poorly soluble drugs.


Subject(s)
Drug Liberation/drug effects , Griseofulvin/chemistry , Nanoparticles/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Crystallization/methods , Drug Compounding/methods , Nanocomposites/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Sodium Dodecyl Sulfate/chemistry , Solubility , Surface-Active Agents/chemistry , Suspensions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...