Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Commun Chem ; 6(1): 94, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37198430

ABSTRACT

Metal complexes are extensively explored as catalysts for oxidation reactions; molecular-based mechanisms are usually proposed for such reactions. However, the roles of the decomposition products of these materials in the catalytic process have yet to be considered for these reactions. Herein, the cyclohexene oxidation in the presence of manganese(III) 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride) (1) in a heterogeneous system via loading the complex on an SBA-15 substrate is performed as a study case. A molecular-based mechanism is usually suggested for such a metal complex. Herein, 1 was selected and investigated under the oxidation reaction by iodosylbenzene or (diacetoxyiodo)benzene (PhI(OAc)2). In addition to 1, at least one of the decomposition products of 1 formed during the oxidation reaction could be considered a candidate to catalyze the reaction. First-principles calculations show that Mn dissolution is energetically feasible in the presence of iodosylbenzene and trace amounts of water.

2.
Phys Chem Chem Phys ; 23(12): 7153-7163, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33734248

ABSTRACT

NO dissociation is an important reaction step in the NO reduction reaction, particularly in the three-way catalyst conversion system for automotive gas exhaust purification. In this study, we used first-principles calculations based on density functional theory to analyze the interaction and dissociation of NO on the PdRuIr ternary alloy. The electronic properties of the atomic combination of the PdRuIr ternary alloy create an effective catalyst that is active for NO dissociation and relatively stable against the formation of volatile RuOx through a weakened O adsorption. This study also shows that for an alloyed system, the strength of NO adsorption may not necessarily predict the dissociation activity. This tendency is observed in the PdRuIr ternary alloy where Ru top is the active site for NO adsorption albeit not an effective site for dissociation. It is presumed that NO dissociation is mediated by its molecular diffusion to active sites for dissociation, which are usually high Ru- and/or Ir-coordinated hollow or bridge sites. These active sites allow high charge transfer from the surface to NO, which fills the NO anti-bonding state and facilitates dissociation. This therefore assumes that the strength of NO molecular adsorption is not a descriptor for NO dissociation on metal alloys but rather the ability of the surface to transfer charge to NO and homogeneity of the strength of adsorption. Furthermore, O adsorption on the ternary alloy, particularly near the Ru sites, is relatively weaker as compared to the pure Ru surface. This weakened O adsorption is attributed to charge re-distribution through alloying, particularly charge transfer from the Ru atom to the Ir and Pd atoms.

3.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573055

ABSTRACT

Two types of melanin pigments, brown to black eumelanin and yellow to reddish brown pheomelanin, are biosynthesized through a branched reaction, which is associated with the key intermediate dopaquinone (DQ). In the presence of l-cysteine, DQ immediately binds to the -SH group, resulting in the formation of cysteinyldopa necessary for the pheomelanin production. l-Cysteine prefers to bond with aromatic carbons adjacent to the carbonyl groups, namely C5 and C2. Surprisingly, this Michael addition takes place at 1,6-position of the C5 (and to some extent at C2) rather than usually expected 1,4-position. Such an anomaly on the reactivity necessitates an atomic-scale understanding of the binding mechanism. Using density functional theory-based calculations, we investigated the binding of l-cysteine thiolate (Cys-S-) to DQ. Interestingly, the C2-S bonded intermediate was less energetically stable than the C6-S bonded case. Furthermore, the most preferred Cys-S--attacked intermediate is at the carbon-carbon bridge between the two carbonyls (C3-C4 bridge site) but not on the C5 site. This structure allows the Cys-S- to migrate onto the adjacent C5 or C2 with small activation energies. Further simulation demonstrated a possible conversion pathway of the C5-S (and C2-S) intermediate into 5-S-cysteinyldopa (and 2-S-cysteinyldopa), which is the experimentally identified major (and minor) product. Based on the results, we propose that the binding of Cys-S- to DQ proceeds via the following path: (i) coordination of Cys-S- to C3-C4 bridge, (ii) migration of Cys-S- to C5 (C2), (iii) proton rearrangement from cysteinyl -NH3+ to O4 (O3), and (iv) proton rearrangement from C5 (C2) to O3 (O4).


Subject(s)
Benzoquinones/chemistry , Cysteine/analogs & derivatives , Cysteinyldopa/chemistry , Dihydroxyphenylalanine/analogs & derivatives , Binding Sites , Cysteine/chemistry , Density Functional Theory , Dihydroxyphenylalanine/chemistry , Melanins/chemistry , Models, Molecular , Protons
4.
J Phys Condens Matter ; 32(19): 195001, 2020 May 08.
Article in English | MEDLINE | ID: mdl-31945756

ABSTRACT

We analyzed the electronic and structural properties of an α-Keggin type molybdenum-based polyoxometalate (POM) [[PMo12O40]3-] and its capacity for reduction reaction via H adsorption using ab initio calculations based on density functional theory (DFT). We also determined the change in the electronic properties brought about by vanadium substitutional doping, and its effect on the capacity of POM to adsorb H atom. We found that the optimal substitutional doping of four vanadium per one unit of POM is adequate to maintain its structural stability. Furthermore, increasing dopant concentration changes charge redistribution such that it induces charge transfer to an initially less active sites for H adsorption on pristine POM. This may increase the possibility of creating active sites from an initially inert H adsorption sites and allows for a higher density of H adsorption. This phenomenon could be relevant for chemical reactions that initially requires high number of pre-adsorbed H atoms.

5.
Sci Rep ; 7(1): 13963, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070850

ABSTRACT

The decomposition of methane (CH4) is a catalytically important reaction in the production of syngas that is used to make a wide spectrum of hydrocarbons and alcohols, and a principal carbon deposition pathway in methane reforming. Literatures suggest that stepped Ni surface is uniquely selective toward methane decomposition to atomic C, contrary to other catalysts that favor the CH fragment. In this paper, we used dispersion-corrected density functional theory-based first principles calculations to identify the electronic factors that govern this interesting property of stepped Ni surface. We found that the adsorption of atomic C on this surface is uniquely characterized by a 5-coordinated bonding of C with Ni atoms from both the surface and subsurface layers. Comparison with Ru surface indicates the importance of the subsurface atoms of stepped Ni surface on its selectivity toward methane decomposition to atomic C. Interestingly, we found that substituting these subsurface atoms with other elements can dramatically change the reaction mechanism of methane decomposition, suggesting a new approach to catalyst design for hydrocarbon reforming applications.

6.
J Phys Condens Matter ; 29(18): 184001, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28291742

ABSTRACT

Many chemical reactions that produce a wide range of hydrocarbons and alcohols involve the breaking of C-H bonds in methane. In this paper, we analyzed the decomposition of this molecule on the B5 step-edge type site of Ru surface using first principles calculations based on dispersion-corrected density functional theory. Methane was found to be weakly adsorbed on the surface, characterized by the hybridization of its sp states with Ru-d xz,yz,zz states. Dissociative adsorption is energetically preferred over molecular methane adsorption, resulting in CH fragment. CH is strongly adsorbed on the surface due to the prevalence of low-energy sp-d bonding interaction over the electron-unoccupied anti-bonding states. This highly stable CH requires higher activation barrier for C-H bond cleavage than CH4.

7.
ACS Omega ; 2(4): 1295-1301, 2017 Apr 30.
Article in English | MEDLINE | ID: mdl-31457505

ABSTRACT

Elucidating the reaction mechanism of steam methane reforming (SMR) is imperative for the rational design of catalysts for efficient hydrogen production. In this paper, we provide mechanistic insights into SMR on Ru surface using first principles calculations based on dispersion-corrected density functional theory. Methane activation (i.e., C-H bond cleavage) was found to proceed via a thermodynamically exothermic dissociative adsorption process, resulting in (CH y + zH)* species ("*" denotes a surface-bound state, and y + z = 4), with C* and CH* being the most stable adsorbates. The calculation of activation barriers suggests that the conversion of C* into O-containing species via C-O bond formation is kinetically slow, indicating that the surface reaction of carbon intermediates with oxygen is a possible rate-determining step. The results suggest the importance of subsequent elementary reactions following methane activation in determining the formation of stable carbon structures on the surface that deactivates the catalyst or the conversion of carbon into O-containing species.

8.
J Phys Condens Matter ; 26(35): 353001, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25110306

ABSTRACT

The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4(-) on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

9.
J Phys Condens Matter ; 25(22): 222001, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23628970

ABSTRACT

We show through first-principles calculations that the electronic properties of Pt4 clusters can be tuned by adsorption on substrates with different electronic valence characters. Pt clusters exhibit a metallic character on γ-Al2O3(111) and insulator properties on CaZrO3(001). The noted difference indicates the role of the electronic valence states of the substrate atoms that directly bond with Pt.

10.
Dalton Trans ; 42(3): 770-5, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23168688

ABSTRACT

We study the adsorption of borohydride on Au and Au-based alloys (Au(3)M with M = Cr, Mn, Fe, Co, and Ni) using first-principles calculations based on spin-polarized density functional theory. Favorable molecular adsorption and greater adsorption stability compared to pure Au are achieved on Au(3)M alloys. For these alloys, there is an emergence of unoccupied states in the surface d band around the Fermi level with respect to the fully occupied d band of pure Au. Thus, the derived antibonding state of the sp-d interaction is upshifted and becomes unoccupied compared to pure Au. The B-H bond elongation of the adsorbed borohydride on these alloy surfaces points to the role of surface-parallel (d(xy) and d(x(2)-y(2)) states) components of the d-band of the alloying metal M, most pronouncedly in the cases of M = Co or Ni. On the alloy surfaces, B binds directly with the alloying metal, unlike in the case of pure Au where the surface bonding is through the H atoms. These results pose relevant insights into the design of Au-based anode catalysts for the direct borohydride fuel cell.

11.
J Phys Condens Matter ; 24(26): 262001, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22692043

ABSTRACT

We compare the electronic properties of Cu(111) and Cu(2)O(111) surfaces in relation to the dissociation of NO using first principles calculations within density functional theory. We note a well-defined three-fold site on both O- and Cu-terminated Cu(2)O surfaces which is verified as the active site for the adsorption and dissociation of NO. The interaction of Cu with O atoms results in the forward shifting of the local density of states and formation of unoccupied states above the Fermi level, compared to the fully occupied d band of pure Cu. These results give valuable insights in the realization of a catalyst without precious metal for the dissociation of NO.

SELECTION OF CITATIONS
SEARCH DETAIL
...