Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1351(1-2): 203-12, 1997 Mar 20.
Article in English | MEDLINE | ID: mdl-9116034

ABSTRACT

The extent of formation and repair of promutagenic (+)-anti-BPDE-N2-dG in transcriptionally active thymidine kinase (tk) gene insert and vector DNA fragments was assessed in the (+)-anti-BPDE treated plasmid p220-tk within the Escherichia coli hosts of varying repair potential. Polyclonal antibody (BP1), specific for (+)-anti-BPDE DNA adduct, was utilized for quantitative estimation of this bulky lesion in nanograms amounts of membrane transblotted DNA fragments. A carcinogen dose-dependent quantitative antibody binding response, due to selective recognition of the major (+)-anti-BPDE adduct, was seen with various DNA fragments separated by gel electrophoresis. The sensitivity of the immunodetection at 0.2 fmol (+)-anti-BPDE DNA adduct, allowed a linear detection in the range of modification level of 0.64 x 10(-7) to 86 x 10(-7) adducts per nucleotide in plasmid DNA. Based on this sensitivity, detection of 0.07 and 0.46 (+)-anti-BPDE DNA adducts in respective tk and vector DNA fragments was achieved upon immunoanalysis of the in vitro modified DNA. Adduct concentration dependent antibody binding was independent of size of the vector or insert fragments. Antibody binding response, to DNA modified in vivo, was dependent upon the dose of (+/-)-anti-BPDE to plasmid DNA replicating within bacterial hosts. The repair of (+)-anti-BPDE DNA adducts was determined as the loss of antibody binding sites in the specific fragments of plasmid DNA within host E. coli. About 50% of the initial DNA damage was repaired from the individual fragments during 15 min post-incubation in the repair-proficient (wild-type) E. coli cells. Complete adduct removal occurred in approx. 60 min of post-incubation period. A significant (91%) decrease in the survival of mutant (uvrA- recA-) cells was observed at 4 microM (+/-)-anti-BPDE treatment without any reduction in the colony forming units in the wild-type cells. On the contrary, no repair was seen in the excision repair-deficient (uvrA-) E. coli cells. The results indicate (1) the selectivity of the immunological method and the unique ability of the (+)-anti-BPDE specific antibodies to monitor the direct loss of this promutagenic base lesion from the in vivo modified DNA (2) the role of host excision repair pathway in efficient removal of adducts from bacterial genome determines the survival of the bacterial cells and (3) the repair of (+)-anti-BPDE DNA adducts in episomally replicating, transcriptionally active sequences occur at a rapid rate presumably due to the ease of accessibility of repair enzymes to lesions within DNA.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism , DNA Adducts/metabolism , DNA Repair , DNA, Bacterial/genetics , Escherichia coli/genetics , Mutagenesis , Plasmids/genetics , DNA Adducts/immunology , DNA Damage , Mutagens , Nucleoside-Phosphate Kinase/genetics , Transcription, Genetic , Transformation, Genetic
2.
Eur J Cancer ; 32A(7): 1209-14, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8758255

ABSTRACT

In order to estimate the level of oxidative damage and its role in breast cancer, the promutagenic oxidative lesion, 8-hydroxy-2'-deoxyguanosine (8-OHdG), was determined in DNA isolated from 75 human breast tissue specimens and from normal and transformed human breast cell lines, utilising a newly developed solid-phase immunoslot blot assay. The amount of 8-OHdG was found to be 0.25 +/- 0.03 pmol/microgram in normal breast tissue from reduction mammoplasty, 0.98 +/- 0.174 pmol/microgram in benign tumours and 2.44 +/- 0.49 pmol/microgram DNA in malignant breast tissue with invasive ductal carcinoma. The malignant tissue had a statistically significant 9.76-fold higher level of 8-OHdG than normal tissue (P < 0.001, Mann-Whitney). A statistically significant 12.9-fold (P = 0.004) higher endogenous formation of 8-OHdG was also observed in cultured breast cancer cells compared with normal breast epithelial cells. In addition, a significantly elevated level (3.35-fold higher, P < 0.05) of 8-OHdG observed in oestrogen receptor-positive compared with oestrogen-negative malignant tissues, and in breast cancer cell lines (9.3-fold higher, P = 0.007) suggests a positive relationship between 8-OHdG formation and oestrogen responsiveness. The extent of 8-OHdG adducts did not show a discernible correlation with either the age or the smoking status of the patients. These results indicate that the accumulation of 8-OHdG in DNA has a predictive significance for breast cancer risk assessment and is conceivably a major contributor in the development of breast neoplasia.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Deoxyguanosine/analogs & derivatives , Oxidative Stress/physiology , 8-Hydroxy-2'-Deoxyguanosine , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers, Tumor/biosynthesis , Breast/chemistry , Breast Neoplasms/etiology , Breast Neoplasms/genetics , DNA Damage , DNA, Neoplasm/genetics , Deoxyguanosine/analysis , Deoxyguanosine/biosynthesis , Female , Humans , Immunoblotting , Middle Aged , Prognosis , Receptors, Estrogen/analysis , Smoking/metabolism , Tumor Cells, Cultured
3.
Biochim Biophys Acta ; 1263(3): 201-11, 1995 Sep 19.
Article in English | MEDLINE | ID: mdl-7548206

ABSTRACT

Sequence specific ethylation damage and repair of ethyl-adducts in selected restriction endonuclease recognition sites within p220-ras plasmid DNA was assessed by a modified Southern blotting coupled immunoprobing technique. In situ UV irradiation of DNA in gels clearly ameliorated the immunodetection of minute amounts of facultative fragments generated due to inhibition of enzyme cleavage site by covalent alkylation modification of the cognate sites. Specific and quantitative localization of induced facultative fragments was achieved in as low as 1 ng of DNA digest corresponding to a peak intensity below 0.1 absorbance unit upon laser scanning. An ENU dose dependent increase in the intensity of representative 7.1 and 7.7 kb facultative fragments was observed as a result of cleavage block at EcoRI (G/ATTC) and BamHI (G/GATCC) restriction endonuclease sites, respectively. To determine the repair in prokaryotic cells, the half-life of repairable alkyl-adducts was assessed in plasmid DNA established in various Escherichia coli strains as a function of post-treatment incubation time in the recovery medium. The repair is indicated by the gradual disappearance of the 7.1, 7.7, 11.9 and 5.5 kb facultative fragments within the wild-type and mutant E. coli strains. The ethyl-adducts within EcoRI and BamHI restriction sites were effectively lost from the target DNA in repair-proficient E. coli with an estimated t1/2 of approximately 40 min. However, decreased overall rate and at least 2.2-times lesser extent of repair was observed in the repair-deficient (ada+ogt-) and (ada-ogt+) cells. No measurable repair was noticed in alkyltransferase defective double mutant (ada-ogt-) even after 2 h of post-treatment incubation. The repair of ethyl-adducts at NotI site (GC/GGCCGC) in 5.5 kb facultative fragment occurred at a relatively faster rate (t1/2 of 27 min) in wild-type bacteria. A 1.5-fold slower repair of ethyl-adducts in BamHI and EcoRI sequences containing G/G and A/G at their cleavage sites was observed compared to C/G in NotI sequence. These results demonstrate the regioselective induction of alkyl-adducts in ethylated DNA and their differential repair in E. coli due to varied efficiency of the repair enzymes for promutagenic DNA base lesions present in different sequence context.


Subject(s)
DNA Ligases/metabolism , DNA Repair , DNA, Bacterial/genetics , Alkylating Agents/pharmacology , Alkylation , Base Sequence , Binding Sites , DNA Restriction Enzymes , DNA, Bacterial/drug effects , Escherichia coli/genetics , Ethylnitrosourea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...