Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(33): 335302, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23883620

ABSTRACT

Well-defined superlattices of colloidal nanocrystals, called supracrystals, are expected to have interesting physical properties. While the electronic properties of thin supracrystals have been extensively studied in the planar configuration, little is known about electron transport through micrometer-thick supracrystals. Here, we investigate the electronic properties of supracrystals made of Au nanocrystals with diameters of 5, 6, 7 and 8 nm using scanning tunneling microscopy/spectroscopy at low temperatures. The current-voltage characteristics show power-law dependences with exponents varying strongly with supracrystal thicknesses from 30 nm to a few microns. The crystallinity of these nanocrystals, called nanocrystallinity, is exclusively single domain for 5 nm nanocrystals and a mixture of single and polycrystalline phase for 6, 7 and 8 nm nanocrystals. We observed that supracrystals made of 5 nm nanocrystals have a different behavior than supracrystals made of 6, 7 and 8 nm nanocrystals and this might be related to the nanocrystallinity. These results help us to better understand the electron transport mechanism in such miniscule structures built from a bottom-up approach.

2.
Eur Phys J E Soft Matter ; 17(3): 339-43, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15968478

ABSTRACT

We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. It is found that O(2) and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic compound. Also, we obtain no evidence for considerable p-type doping of pentacene by O(2) at low pressure. However, oxygen exposure lowers the hole injection barrier at the interface between Au and pentacene by 0.25 eV, presumably due to a modification of the Au surface properties.


Subject(s)
Electrochemistry/methods , Nanostructures/chemistry , Organic Chemicals/chemistry , Oxygen/chemistry , Semiconductors , Spectrophotometry, Ultraviolet , Materials Testing/methods , Nanostructures/analysis , Organic Chemicals/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...