Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
iScience ; 26(2): 105963, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818289

ABSTRACT

Cardiac fibrosis is a hallmark in late-stage familial dilated cardiomyopathy (DCM) patients, although the underlying mechanism remains elusive. Cardiac exosomes (Exos) have been reported relating to fibrosis in ischemic cardiomyopathy. Thus, we investigated whether Exos secreted from the familial DCM cardiomyocytes could promote fibrogenesis. Using human iPSCs differentiated cardiomyocytes we isolated Exos of angiotensin II stimulation conditioned media from either DCM or control (CTL) cardiomyocytes. Of interest, cultured cardiac fibroblasts had increased fibrogenesis following exposure to DCM-Exos rather than CTL-Exos. Meanwhile, injecting DCM-Exos into mouse hearts enhanced cardiac fibrosis and impaired cardiac function. Mechanistically, we identified the upregulation of miRNA-218-5p in the DCM-Exos as a critical contributor to fibrogenesis. MiRNA-218-5p activated TGF-ß signaling via suppression of TNFAIP3, a master inflammation inhibitor. In conclusion, our results illustrate a profibrotic effect of cardiomyocytes-derived Exos that highlights an additional pathogenesis pathway for cardiac fibrosis in DCM.

2.
Int J Biol Macromol ; 151: 891-900, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32014478

ABSTRACT

Systemic lupus erythematosus (SLE) is an inflammatory, autoimmune disorder of unknown etiology. The inflammatory stress in SLE patients may modify macromolecules and produce structural/functional abnormalities. The present study is aimed at examining the consequences of stresses on the structure of albumin in SLE patients. Albumin was isolated from the sera of SLE/healthy subjects. Multiple physicochemical techniques were used to elucidate, structure of albumin. Advanced glycation end products in SLE patients' albumin were identified by the AGE specific fluorescence. Quenching of tryptophan, tyrosine fluorescence and surface protein hydrophobicity was observed in SLE patients' albumin. Protein-bound carbonyls were elevated while free thiol, lysine, arginine, and alpha helicity was found to be decreased in SLE albumin. Furthermore, changes in the secondary structure of SLE albumin were observed as shift in the position of amide I/II bands. Functionality of SLE albumin was also compromised as its cobalt-binding ability was substantially declined. Adduction of moieties was detected by dynamic light scattering (DLS) and confirmed by matrix assisted laser desorption/ionization. DLS, thioflavin T and transmission electron microscopy results confirmed aggregates in SLE patients' albumin. This study may be helpful in understanding the role of modified albumin in the cofounding pathologies associated with SLE.


Subject(s)
Albumins/chemistry , Lupus Erythematosus, Systemic , Protein Conformation , Stress, Physiological , Adolescent , Adult , Aged , Female , Humans , Hydrophobic and Hydrophilic Interactions , Male , Middle Aged , Oxidation-Reduction , Oxidative Stress , Protein Aggregates , Spectrum Analysis , Young Adult
3.
Sci Transl Med ; 11(493)2019 05 22.
Article in English | MEDLINE | ID: mdl-31118291

ABSTRACT

The stem cell field is hindered by its inability to noninvasively monitor transplanted cells within the target organ in a repeatable, time-sensitive, and condition-specific manner. We hypothesized that quantifying and characterizing transplanted cell-derived exosomes in the recipient plasma would enable reliable, noninvasive surveillance of the conditional activity of the transplanted cells. To test this hypothesis, we used a human-into-rat xenogeneic myocardial infarction model comparing two well-studied progenitor cell types: cardiosphere-derived cells (CDCs) and c-kit+ cardiac progenitor cells (CPCs), both derived from the right atrial appendage of adults undergoing cardiopulmonary bypass. CPCs outperformed the CDCs in cell-based and in vivo regenerative assays. To noninvasively monitor the activity of transplanted CDCs or CPCs in vivo, we purified progenitor cell-specific exosomes from recipient total plasma exosomes. Seven days after transplantation, the concentration of plasma CPC-specific exosomes increased about twofold compared to CDC-specific exosomes. Computational pathway analysis failed to link CPC or CDC cellular messenger RNA (mRNA) with observed myocardial recovery, although recovery was linked to the microRNA (miRNA) cargo of CPC exosomes purified from recipient plasma. We further identified mechanistic pathways governing specific outcomes related to myocardial recovery associated with transplanted CPCs. Collectively, these findings demonstrate the potential of circulating progenitor cell-specific exosomes as a liquid biopsy that provides a noninvasive window into the conditional state of the transplanted cells. These data implicate the surveillance potential of cell-specific exosomes for allogeneic cell therapies.


Subject(s)
Exosomes/metabolism , Myocardial Ischemia/physiopathology , Myocardial Ischemia/therapy , Recovery of Function , Stem Cell Transplantation , Stem Cells/metabolism , Aged , Animals , Female , Humans , Major Histocompatibility Complex , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Ischemia/genetics , Myocytes, Cardiac/pathology , Phenotype , Proto-Oncogene Proteins c-kit/metabolism , Rats, Nude , Reproducibility of Results , Systems Biology
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 194: 194-201, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29351859

ABSTRACT

Structural alterations in proteins under oxidative stress have been widely implicated in the immuno-pathology of various disorders. This study has evaluated the extent of damage in the conformational characteristics of IgG by hydroxyl radical (OH) and studied its implications in the immuno-pathology of rheumatoid arthritis (RA). Using various biophysical and biochemical techniques, changes in aromatic microenvironment of the IgG and the protein aggregation became evident after treatment with OH. The SDS-PAGE study confirmed the protein aggregation while far ultraviolet circular dichroism spectroscopy (Far-UV CD) and fourier transform infrared spectroscopy (FTIR) inferred towards the alterations in secondary structure of IgG under OH stress. Dynamic light scattering showed that the modification increased the hydrodynamic radius and polydispersity of IgG. The free arginine and lysine content reduced upon modification. OH induced aggregation was confirmed by enhanced thioflavin-T (ThT) fluorescence and red shift in the congo red (CR) absorbance. The study on experimental animals reiterates the earlier findings of enhanced immunogenicity of OH treated IgG (OH-IgG) compared to that of native IgG. OH-IgG strongly interacted with the antibodies derived from the serum of 80 rheumatoid arthritis (RA) patients. The overwhelming and strong tendency of OH-IgG to bind the antibodies derived from the serum of RA patients points towards the modification of IgG under patho-physiological conditions in RA that generate neo-epitopes and eventually cause the generation of auto antibodies that circulate in the patient sera. Further studies on this aspect may possibly lead to the development of a biomarker for RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , Hydroxyl Radical/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Autoantibodies/blood , Case-Control Studies , Humans , Oxidation-Reduction , Oxidative Stress
5.
Int J Biol Macromol ; 106: 1240-1249, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28851636

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disorder where the role of inflammatory processes in the etiopathogenesis is well documented. Despite extensive research, the trigger for initiation of the disease has not been identified. Peroxynitrite, a strong nitrating/oxidizing agent has been reported in SLE and other autoimmune diseases. In this study, human serum albumin (HSA) was exposed to peroxynitrite for 30min at 37°C. The structure of HSA was grossly perturbed when examined by various physico-chemical techniques. Peroxynitrite mediated nitration of HSA was confirmed by LCMS/MS. Furthermore, increase in hydrodynamic radius of peroxynitrite-modified-HSA suggests the attachment of nitro group(s). Aggregation in peroxynitrite-modified-HSA was evident in a TEM scan. Nitration, oxidation, cross linking, aggregation etc conferred immunogenicity on peroxynitrite-modified-HSA. High titre antibodies were elicited in rabbits immunized with peroxynitrite-modified-HSA. Induced antibodies were highly specific for peroxynitrite-modified-HSA but showed considerable binding with other nitrated molecules. Direct binding/inhibition ELISA carried out with autoantibodies in SLE sera showed preferential binding with peroxynitrite-modified-HSA. Anti-nDNA positive IgG from SLE sera showed preference for peroxynitrite-modified-HSA when subjected to immunoassay (direct binding and inhibition) and mobility shift assay. Our results reinforce the role of augmented inflammation in SLE progression.


Subject(s)
Autoantibodies/immunology , Lupus Erythematosus, Systemic/blood , Peroxynitrous Acid/chemistry , Serum Albumin, Human/immunology , Autoantibodies/blood , Electrophoretic Mobility Shift Assay/methods , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/blood , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Peroxynitrous Acid/immunology , Serum Albumin, Human/chemistry
6.
Int J Biol Macromol ; 107(Pt B): 2141-2149, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29051099

ABSTRACT

Chronic oxidative stress fuels pathogenesis of a large set of diseases. Oxidative stress is the cause and consequence of numerous diseases including type 1 diabetes mellitus (T1DM), in which there is selective destruction of insulin producing pancreatic ß-cells. Studies have documented that hyperglycemia produces profound stress. In vivo production of numerous reactive oxygen, nitrogen, chlorine species and lipid/sugar oxidation products in T1DM patients may be the result of persistent hyperglycemia. Post-translational modifications by reactive species may create new antigenic epitopes and play a role in the development of autoimmune response. In this paper our main focus was to establish the effect of existing hyperglycemia induced oxido-nitrosative stress in T1DM patients on the integrity of human serum albumin. Raised nitric oxide, carbonyl, RBC hemolysis, lowered ferric reducing antioxidant power (FRAP), thiol and deformed RBC in T1DM are all highly suggestive of persistent oxido-nitrosative stress. Hyperglycemia induced generation of advanced glycation end products (AGEs) was established by LCMS. Chronic oxido-nitrosative stress can modify HSA in T1DM patients, producing immunologically active albumin. Therefore, it is speculated that the aberrant HSA may play a role in the initiation/progression of T1DM.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Hyperglycemia/metabolism , Reactive Oxygen Species/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Antioxidants/metabolism , Biophysical Phenomena , Case-Control Studies , Erythrocytes/metabolism , Erythrocytes/ultrastructure , Hemolysis , Humans , Hydrophobic and Hydrophilic Interactions , Iron/metabolism , Mass Spectrometry , Nitric Oxide/metabolism , Oxidation-Reduction , Protein Carbonylation , Serum Albumin, Human/isolation & purification , Spectrum Analysis , Sulfhydryl Compounds/blood
7.
Int J Biol Macromol ; 104(Pt A): 19-29, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28583871

ABSTRACT

Structural rearrangements and condensations of proteins under hyperglycemic stress have been implicated in various pathological disorders. This study aims to probe the role of methylglyoxal (MG) modified human immunoglobulin G (MG-IgG) in immuno-pathology of type 2 diabetes mellitus (T2DM). MG was found to perturb the structural integrity of IgG, affect its aromatic micro-environment and cause the generation of advanced glycation end products (AGEs) and aggregate adducts. It liberated the hydrophobic pockets of the protein, reduced its ß pleated sheet structure and affected its tertiary conformation. Transition from ß sheet to α helix and random coil was also observed in IgG upon modification by MG. It acted with strong oxidative potential and caused oligomerisation and disordered or amorphous type aggregation in the modified protein. Modified IgG had a cytotoxic and genotoxic impact. The MG modified IgG presented novel antigenic determinants that lead to an aggressive immune response. The antibodies had high affinity towards the immunogen. Auto-antibodies derived from T2DM patients exhibited strong affinity towards the modified IgG in comparison to the unmodified protein. Specificity of serum antibodies from T2DM patients was further confirmed by competitive-inhibition ELISA. The potential role of MG-IgG in the immunopathogenesis of T2DM has been discussed.


Subject(s)
Diabetes Mellitus, Type 2/immunology , Immunoglobulin G/metabolism , Pyruvaldehyde/metabolism , DNA Damage , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glycation End Products, Advanced/metabolism , Healthy Volunteers , Humans , Lymphocytes/metabolism , Young Adult
8.
J Biomol Struct Dyn ; 35(9): 2066-2076, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27346535

ABSTRACT

In this study, human serum albumin (HSA), the most abundant protein of blood plasma, was modified with varying concentrations of peroxynitrite. The peroxynitrite-induced changes in HSA was monitored by spectroscopy, SDS-PAGE, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal denaturation studies, and matrix-assisted laser desorption/inonization-time of flight mass spectrometry (MALDI-TOF MS). Aggregate formation was studied by thioflavin T binding and scanning electron microscopy (SEM). The results indicated formation of 3-nitrotyrosine, 6-nitrotryptophan, dityrosine, and carbonyls in modified samples and showed retarded mobility in SDS-polyacrylamide gel. Reduction in α-helicity and surface protein hydrophobicity confirmed the secondary and tertiary structure alterations in peroxynitrite-modified-HSA. Also, attachment of nitro group and increase in melting temperature was observed in modified sample. Furthermore, significant enhancement in the fluorescence intensity of ThT upon binding with peroxynitrite-modified-HSA and images under scanning electron microscope are suggestive of protein aggregation. It is, therefore, speculated that HSA modified by endogenously formed peroxynitrite might act as a trigger for nitration/aggregation and suggested the role of peroxynitrite-modified-HSA in SLE.


Subject(s)
Peroxynitrous Acid/chemistry , Protein Aggregates/drug effects , Serum Albumin, Human/chemical synthesis , Benzothiazoles , Binding Sites/drug effects , Electrophoresis, Polyacrylamide Gel , Humans , Microscopy, Electron, Scanning , Peroxynitrous Acid/pharmacology , Protein Binding/drug effects , Serum Albumin, Human/antagonists & inhibitors , Serum Albumin, Human/ultrastructure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrum Analysis , Thiazoles/chemistry
9.
Arch Biochem Biophys ; 603: 72-80, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27210739

ABSTRACT

IgG is an important defence protein. To exhibit optimum function the molecule must maintain its native structure. Peroxynitrite is a potent oxidizing and nitrating agent produced in vivo under pathophysiological conditions. It can oxidize and/or nitrate various amino acids causing changes in the structure and function of proteins. Such proteins may be involved in the pathogenesis of many inflammatory diseases, including rheumatoid arthritis. In the present work, peroxynitrite-induced structural changes in IgG have been studied by UV-visible, fluorescence, CD, FT-IR, DLS spectroscopy and DSC as well as by SDS-PAGE. Peroxynitrite-modified IgG exhibited hyperchromicity at 280 nm, quenching of tryptophan fluorescence, increase in ANS fluorescence, loss of ß-sheet, shift in the positions of amide I and amide II bands, appearance of new peak in FT-IR, attachment of nitro residues and increase in melting temperature, compared to native IgG. Furthermore, peroxynitrite-modified IgG exhibited an additional peak at 420 nm, quenching in tyrosine fluorescence and enhancement in dityrosine fluorescence compared to native IgG. Generation of nitrotyrosine, dityrosine and nitrotryptophan was also observed in peroxynitrite-modified IgG. Gross structural changes in IgG caused by peroxynitrite and observed in vitro may favour autoantibodies induction in vivo under similar conditions.


Subject(s)
Immunoglobulin G/chemistry , Peroxynitrous Acid/chemistry , Arthritis, Rheumatoid/metabolism , Calorimetry, Differential Scanning , Circular Dichroism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Humans , Inflammation , Light , Microscopy, Fluorescence , Oxygen/chemistry , Protein Structure, Secondary , Scattering, Radiation , Sepharose/chemistry , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , Temperature , Tryptophan/chemistry , Tyrosine/analogs & derivatives , Tyrosine/chemistry
10.
Cell Immunol ; 293(2): 74-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25577340

ABSTRACT

Nonenzymatic glycation of amino groups of DNA bases by reducing sugars can generate advanced glycation end products (AGEs). Cellular formation of AGEs under normal physiology is continuously scanned and removed by efficient system in the cells. However, excess formation and accumulation of AGEs may be cause or consequence of some human diseases. Mammalian DNA incubated with d-glucose for 28 days at 37°C showed structural changes in DNA as confirmed by UV, fluorescence, CD, melting temperature, S1 nuclease sensitivity and gel electrophoresis. Formation of DNA-AGE was confirmed by HPLC and LC-MS. Enzyme immunoassay and electrophoretic mobility shift assay of autoantibodies in type 2 diabetes patients' sera with disease duration of 5-15 years exhibited significantly high binding with DNA-AGE as compared to patients with 1-5 years of disease duration. Autoantibodies against aberrant DNA-AGE may be important in the assessment of initiation/progression of secondary complications in type 2 diabetes mellitus patients.


Subject(s)
Atherosclerosis/immunology , Autoantibodies/immunology , Diabetes Mellitus, Type 2/immunology , Diabetic Nephropathies/immunology , Diabetic Retinopathy/immunology , Glycation End Products, Advanced/immunology , Adult , Aged , Autoantibodies/blood , Biomarkers/blood , DNA/immunology , DNA/ultrastructure , Electrophoretic Mobility Shift Assay , Female , Humans , Male , Nucleic Acid Conformation , Spectrophotometry, Ultraviolet
11.
Biomed Res Int ; 2014: 498420, 2014.
Article in English | MEDLINE | ID: mdl-25165707

ABSTRACT

Nanotechnology has emerged as one of the leading fields of the science having tremendous application in diverse disciplines. As nanomaterials are increasingly becoming part of everyday consumer products, it is imperative to assess their impact on living organisms and on the environment. Physicochemical characteristics of nanoparticles and engineered nanomaterials including size, shape, chemical composition, physiochemical stability, crystal structure, surface area, surface energy, and surface roughness generally influence the toxic manifestations of these nanomaterials. This compels the research fraternity to evaluate the role of these properties in determining associated toxicity issues. Reckoning with this fact, in this paper, issues pertaining to the physicochemical properties of nanomaterials as it relates to the toxicity of the nanomaterials are discussed.


Subject(s)
Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology , Humans , Nanoparticles/toxicity , Nanostructures/toxicity , Particle Size , Surface Properties
12.
Int J Biol Macromol ; 69: 408-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24953604

ABSTRACT

Nonenzymatic glycosylation of proteins finally generates advanced glycation end products (AGEs). The Schiff's base and Amadori adduct are stages of early glycation. AGE-modified IgG may undergo conformational alterations and the final entity of the process may be involved in the pathogenesis of Rheumatoid Arthritis (RA). In this study, glycation of human IgG was carried out with varying concentrations of glucose. Effect of incubation period on glycation of IgG has also been studied. Amadori adduct was detected by nitroblue tetrazolium (NBT) dye. The glucose mediated structural alterations in IgG were studied by UV, fluorescence, CD, FT-IR, DLS and DSC spectroscopy, and SDS-PAGE. Glycation-induced aggregation in AGE-IgG was reported in the form of binding of thioflavin T and congo red. Furthermore, AGE-modified IgG exhibited hyperchromicity, decrease of tryptophan fluorescence accompanied by increase in AGE specific fluorescence, loss of ß-sheet, appearance of new peak in FT-IR, increase in hydrodynamic size and melting temperature. SDS-PAGE results showed decrease in the band intensity of glycosylated-IgG compared to native IgG. Glycation-induced modifications and aggregation of IgG might be important in the pathogenesis of RA.


Subject(s)
Immunoglobulin G/metabolism , Glucose/metabolism , Glycation End Products, Advanced/metabolism , Glycosylation , Humans , Immunoglobulin G/chemistry , Nitroblue Tetrazolium/metabolism , Protein Denaturation , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...