Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 874: 162482, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858230

ABSTRACT

Cellulose micro- and nanofibers (CNFs) are commonly regarded as "greener" than petro-based materials. The high energy input that their production still demands, along with the use of chemicals or heat in some pretreatments, asks for a critical view. This paper attempts a life cycle assessment of CNFs produced from bleached hardwood kraft pulp via three different pre-treatments before mechanical homogenization. First, a fully mechanical route, based on a Valley beating pre-treatment. Second, an enzymatic route, based on endoglucanases and requiring certain temperature (~50 °C). Third, a TEMPO-mediated oxidation route, considering not only the impact of the chemical treatment itself but also the production of TEMPO from ammonia and acetone. The main output of the study is that both, mechanical and TEMPO-mediated oxidation routes, present lower impacts than the enzymatic pre-treatment. Although the mechanical route presents slightly milder contributions to climate change, acidification, eutrophication, and other indicators, saying that TEMPO-mediated oxidation is environmentally unfeasible should be put under question. After all, and despite being disregarded in most assessment publications up to date, it is the only well-known way to selectively oxidize primary hydroxyl groups and thus producing kinds of CNFs that are unthinkable by other ways.


Subject(s)
Cellulose , Nanofibers , Animals , Oxidation-Reduction , Technology
2.
Sci Total Environ ; 866: 161094, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36566846

ABSTRACT

The world's energy transition from fossil to renewable energy is unthinkable without further research in energy storage. Decreasing the environmental impacts from the production of energy storage technologies is essential for achieving a green energy transition. Calcium Zincate (CAZN) is used as active material in rechargeable zinc-based batteries (and other products, such as heterogeneous catalysts for biodiesel or antifungal products). They present a low-cost, safer, alternative to Lithium based batteries and are targeted as replacement solutions for lead-acid batteries. We propose a novelty in the synthesis of CAZN, the hydro-micro-mechanical process (HMMS). The residence time of this new route is about 20 times lower than the traditional processes, so its production needs less infrastructure and can deliver quicker at an industrial scale. In addition, laboratory tests indicate that HMMS CAZN has more reaction surface area and the activation of the battery is 1.77 times faster. Using the life cycle assessment (LCA) method, we compare this new process with the current best option, hydro-thermal synthesis (HTS). The cradle-to-gate results per kg of CAZN already indicates that HMMS is an environmentally better alternative for all indicators; especially when considering the normalization of the results with the residence time and the surface area, HMMS delivers better results, with improvements of 97 % in global warming, for instance. With this, we demonstrate that, outside of the cradle-to-gate, variables that make the final products better service units or give more function should be considered as valuable additional information when deciding among alternatives. This also highlights the importance of life cycle thinking when working with chemical processes and substances. In the sensitivity analysis, we developed 7 scenarios related to the energy demand of the processes, and we incorporated the projection in the European electricity mix for 2030 and 2050.

SELECTION OF CITATIONS
SEARCH DETAIL
...