Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 75(20): 4335-50, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26282171

ABSTRACT

The transcription accessory factor TIF1γ/TRIM33/RFG7/PTC7/Ectodermin functions as a tumor suppressor that promotes development and cellular differentiation. However, its precise function in cancer has been elusive. In the present study, we report that TIF1γ inactivation causes cells to accumulate chromosomal defects, a hallmark of cancer, due to attenuations in the spindle assembly checkpoint and the post-mitotic checkpoint. TIF1γ deficiency also caused a loss of contact growth inhibition and increased anchorage-independent growth in vitro and in vivo. Clinically, reduced TIF1γ expression in human tumors correlated with an increased rate of genomic rearrangements. Overall, our work indicates that TIF1γ exerts its tumor-suppressive functions in part by promoting chromosomal stability.


Subject(s)
Cell Cycle Checkpoints/genetics , Chromosomal Instability , Gene Expression Regulation, Neoplastic , Mitosis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Carcinoma in Situ , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gene Silencing , Humans , Mice , Mice, Knockout , Neoplasms/pathology , Ploidies , Spindle Apparatus/metabolism
2.
Am J Pathol ; 180(6): 2214-21, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22469842

ABSTRACT

Transcriptional intermediary factor 1γ (TIF1γ; alias, TRIM33/RFG7/PTC7/ectodermin) belongs to an evolutionarily conserved family of nuclear factors that have been implicated in stem cell pluripotency, embryonic development, and tumor suppression. TIF1γ expression is markedly down-regulated in human pancreatic tumors, and Pdx1-driven Tif1γ inactivation cooperates with the Kras(G12D) oncogene in the mouse pancreas to induce intraductal papillary mucinous neoplasms. In this study, we report that aged Pdx1-Cre; LSL-Kras(G12D); Tif1γ(lox/lox) mice develop pancreatic ductal adenocarcinomas (PDACs), an aggressive and always fatal neoplasm, demonstrating a Tif1γ tumor-suppressive function in the development of pancreatic carcinogenesis. Deletion of SMAD4/DPC4 (deleted in pancreatic carcinoma locus 4) occurs in approximately 50% of human cases of PDAC. We, therefore, assessed the genetic relationship between Tif1γ and Smad4 signaling in pancreatic tumors and found that Pdx1-Cre; LSL-Kras(G12D); Smad4(lox/lox); Tif1γ(lox/lox) (alias, KSSTT) mutant mice exhibit accelerated tumor progression. Consequently, Tif1γ tumor-suppressor effects during progression from a premalignant to a malignant state in our mouse model of pancreatic cancer are independent of Smad4. These findings establish, for the first time to our knowledge, that Tif1γ and Smad4 both regulate an intraductal papillary mucinous neoplasm-to-PDAC sequence through distinct tumor-suppressor programs.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Smad4 Protein/genetics , Transcription Factors/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Progression , Gene Deletion , Genes, Tumor Suppressor , Genetic Predisposition to Disease , Magnetic Resonance Imaging , Mice , Mice, Mutant Strains , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Signal Transduction/genetics , Smad4 Protein/physiology , Transcription Factors/deficiency , Transcription Factors/physiology
3.
PLoS Genet ; 5(7): e1000575, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19629168

ABSTRACT

Inactivation of the Transforming Growth Factor Beta (TGFbeta) tumor suppressor pathway contributes to the progression of Pancreatic Ductal AdenoCarcinoma (PDAC) since it is inactivated in virtually all cases of this malignancy. Genetic lesions inactivating this pathway contribute to pancreatic tumor progression in mouse models. Transcriptional Intermediary Factor 1 gamma (TIF1gamma) has recently been proposed to be involved in TGFbeta signaling, functioning as either a positive or negative regulator of the pathway. Here, we addressed the role of TIF1gamma in pancreatic carcinogenesis. Using conditional Tif1gamma knockout mice (Tif1gamma(lox/lox)), we selectively abrogated Tif1gamma expression in the pancreas of Pdx1-Cre;Tif1gamma(lox/lox) mice. We also generated Pdx1-Cre;LSL-Kras(G12D);Tif1gamma(lox/lox) mice to address the effect of Tif1gamma loss-of-function in precancerous lesions induced by oncogenic Kras(G12D). Finally, we analyzed TIF1gamma expression in human pancreatic tumors. In our mouse model, we showed that Tif1gamma was dispensable for normal pancreatic development but cooperated with Kras activation to induce pancreatic tumors reminiscent of human Intraductal Papillary Mucinous Neoplasms (IPMNs). Interestingly, these cystic lesions resemble those observed in Pdx1-Cre;LSL-Kras(G12D);Smad4(lox/lox) mice described by others. However, distinctive characteristics, such as the systematic presence of endocrine pseudo-islets within the papillary projections, suggest that SMAD4 and TIF1gamma don't have strictly redundant functions. Finally, we report that TIF1gamma expression is markedly down-regulated in human pancreatic tumors by quantitative RT-PCR and immunohistochemistry supporting the relevance of these findings to human malignancy. This study suggests that TIF1gamma is critical for tumor suppression in the pancreas, brings new insight into the genetics of pancreatic cancer, and constitutes a promising model to decipher the respective roles of SMAD4 and TIF1gamma in the multifaceted functions of TGFbeta in carcinogenesis and development.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Genes, Tumor Suppressor , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/genetics
4.
J Virol ; 83(15): 7524-35, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19457995

ABSTRACT

Infectious viral DNA constitutes only a small fraction of the total viral DNA produced during retroviral infection, and as such its exact behavior is largely unknown. In the present study, we characterized in detail functional viral DNA produced during the early steps of human immunodeficiency virus type 1 infection by analyzing systematically their kinetics of synthesis and integration in different target cells. In addition, we have compared the functional stability of viral nucleoprotein complexes arrested at their pre-reverse transcription state, and we have attempted to measure the kinetics of loss of capsid proteins from viral complexes through the susceptibility of the early phases of infection to cyclosporine, a known inhibitor of the interaction between viral capsid and cyclophilin A. Overall, our data suggest a model in which loss of capsid proteins from viral complexes and reverse transcription occur concomitantly and in which the susceptibility of target cells to infection results from a competition between the ability of the cellular environment to quickly destabilize viral nucleoprotein complexes and the capability of the virus to escape such targeting by engaging the reverse transcription reaction.


Subject(s)
Genome, Viral , HIV Infections/virology , HIV-1/physiology , Virus Integration , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , DNA, Viral/genetics , HIV-1/chemistry , HIV-1/genetics , Humans , Kinetics , Reverse Transcription , Virus Assembly , Virus Replication
5.
Cancer Res ; 69(5): 2000-9, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19244125

ABSTRACT

Immunohistochemical analysis of FOXP3 in primary breast tumors showed that a high number of tumor-infiltrating regulatory T cells (Ti-Treg) within lymphoid infiltrates surrounding the tumor was predictive of relapse and death, in contrast to those present within the tumor bed. Ex vivo analysis showed that these tumor-infiltrating FOXP3(+) T cells are typical Treg based on their CD4(+)CD25(high)CD127(low)FOXP3(+) phenotype, their anergic state on in vitro stimulation, and their suppressive functions. These Ti-Treg could be selectively recruited through CCR4 as illustrated by (a) selective blood Treg CCR4 expression and migration to CCR4 ligands, (b) CCR4 down-regulation on Ti-Treg, and (c) correlation between Ti-Treg in lymphoid infiltrates and intratumoral CCL22 expression. Importantly, in contrast to other T cells, Ti-Treg are selectively activated locally and proliferate in situ, showing T-cell receptor engagement and suggesting specific recognition of tumor-associated antigens (TAA). Immunohistochemical stainings for ICOS, Ki67, and DC-LAMP show that Ti-Treg were close to mature DC-LAMP(+) dendritic cells (DC) in lymphoid infiltrates but not in tumor bed and were activated and proliferating. Furthermore, proximity between Ti-Treg, CD3(+), and CD8(+) T cells was documented within lymphoid infiltrates. Altogether, these results show that Treg are selectively recruited within lymphoid infiltrates and activated by mature DC likely through TAA presentation, resulting in the prevention of effector T-cell activation, immune escape, and ultimately tumor progression. This study sheds new light on Treg physiology and validates CCR4/CCL22 and ICOS as therapeutic targets in breast tumors, which represent a major health problem.


Subject(s)
Breast Neoplasms/immunology , Chemokine CCL22/physiology , Lymphocyte Activation , Receptors, CCR4/physiology , T-Lymphocytes, Regulatory/physiology , Antigens, Differentiation, T-Lymphocyte/physiology , Cell Aggregation , Cell Movement , Forkhead Transcription Factors/analysis , Humans , Inducible T-Cell Co-Stimulator Protein , Ki-67 Antigen/analysis
6.
J Virol ; 82(24): 12335-45, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18829761

ABSTRACT

Human immunodeficiency virus type 2 (HIV-2)/simian immunodeficiency virus SIV(SM) Vpx is incorporated into virion particles and is thus present during the early steps of infection, when it has been reported to influence the nuclear import of viral DNA. We recently reported that Vpx promoted the accumulation of full-length viral DNA following the infection of human monocyte-derived dendritic cells (DCs). This positive effect was exerted following the infection of DCs with cognate viruses and with retroviruses as divergent as HIV-1, feline immunodeficiency virus, and even murine leukemia virus, leading us to suggest that Vpx counteracted an antiviral restriction present in DCs. Here, we show that Vpx is required, albeit to a different extent, for the infection of all myeloid but not of lymphoid cells, including monocytes, macrophages, and monocytoid THP-1 cells that had been induced to differentiate with phorbol esters. The intracellular localization of Vpx was highly heterogeneous and cell type dependent, since Vpx localized differently in HeLa cells and DCs. Despite these differences, no clear correlation between the functionality of Vpx and its intracellular localization could be drawn. As a first insight into its function, we determined that SIV(SM)/HIV-2 and SIV(RCM) Vpx proteins interact with the DCAF1 adaptor of the Cul4-based E3 ubiquitin ligase complex recently described to associate with HIV-1 Vpr and HIV-2 Vpx. However, the functionality of Vpx proteins in the infection of DCs did not strictly correlate with DCAF1 binding, and knockdown experiments failed to reveal a functional role for this association in differentiated THP-1 cells. Lastly, when transferred in the context of a replication-competent viral clone, Vpx was required for replication in DCs.


Subject(s)
HIV-2/metabolism , Myeloid Cells/metabolism , Simian Immunodeficiency Virus/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Cell Differentiation , Cells, Cultured , Dendritic Cells/metabolism , HIV-2/genetics , Humans , Point Mutation/genetics , Simian Immunodeficiency Virus/genetics , Time Factors , Viral Regulatory and Accessory Proteins/genetics , Virus Replication
7.
J Virol ; 82(13): 6557-65, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18417568

ABSTRACT

Blood-circulating monocytes migrate in tissues in response to danger stimuli and differentiate there into two major actors of the immune system: macrophages and dendritic cells. Given their migratory behavior and their pivotal role in the orchestration of immune responses, it is not surprising that cells of the monocyte lineage are the target of several viruses, including human immunodeficiency virus type 1 (HIV-1). HIV-1 replicates in monocytoid cells to an extent that is influenced by their differentiation status and modulated by exogenous stimulations. Unstimulated monocytes display a relative resistance to HIV infection mostly exerted during the early steps of the viral life cycle. Despite intensive studies, the identity of the affected step remains controversial, although it is generally assumed to take place after viral entry. We reexamine here the early steps of viral infection of unstimulated monocytes using vesicular stomatitis virus G protein-pseudotyped HIV-1 virions. Our data indicate that a first block to the early steps of infection of monocytes with these particles occurs at the level of viral entry. After entry, reverse transcription and integration proceed with extremely slow kinetics rather than being blocked. Once completed, viral DNA molecules delay entry into the nucleus and integration for up to 5 to 6 days. The inefficacy of these steps accounts for the resistance of monocytes to HIV-1 during the early steps of infection.


Subject(s)
HIV Infections/physiopathology , HIV-1 , Monocytes/virology , Virus Internalization , DNA Primers/genetics , Flow Cytometry , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Fluorescence , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...