Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 9(10): 5891-5905, 2019 May.
Article in English | MEDLINE | ID: mdl-31161006

ABSTRACT

The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid-Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter-specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.

2.
Mol Biol Evol ; 19(11): 1920-33, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12411601

ABSTRACT

The cave bear spread from Western Europe to the Near East during the Riss glaciation (250 KYA) before becoming extinct approximately 12 KYA. During that period, the climatic conditions were highly dynamic, oscillating between glacial and temperate episodes. Such events have constrained the geographic repartition of species, the movements of populations and shaped their genetic diversity. We retrieved and analyzed ancient DNA from 21 samples from five European caves ranging from 40 to 130 KYA. Combined with available data, our data set accounts for a total of 41 sequences of cave bear, coming from 18 European caves. We distinguish four haplogroups at the level of the mitochondrial DNA control region. The large population size of cave bear could account for the maintenance of such polymorphism. Extensive gene flow seems to have connected European populations because two haplogroups cover wide geographic areas. Furthermore, the extensive sampling of the deposits of the Scladina cave located in Belgium allowed us to correlate changes in climatic conditions with the intrapopulational genetic diversity over 90 KY.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Fossils , Haplotypes/genetics , Ursidae/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Mitochondrial/isolation & purification , Europe , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...