Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Endocrinology ; 161(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32502250

ABSTRACT

Maternal nutrition can affect the susceptibility of the offspring to metabolic disease later in life, suggesting that this period is a window of opportunity for intervention to reduce the risk of metabolic disease. Resveratrol, a natural polyphenol, has a wide range of beneficial properties including anti-obesogenic, anti-atherosclerotic, and anti-diabetic effects. We previously reported that maternal resveratrol intake during pregnancy and lactation has early metabolic effects in the offspring with these effects at weaning depending on the type of diet ingested by the mother and the offspring's sex. Here we analyzed whether these metabolic changes are maintained in the adult offspring and if they remain sex and maternal diet dependent. Wistar rats received a low-fat diet (LFD; 10.2% Kcal from fat) or high fat diet (HFD; 61.6% Kcal from fat) during pregnancy and lactation. Half of each group received resveratrol in their drinking water (50 mg/L). Offspring were weaned onto standard chow on postnatal day 21. Maternal resveratrol reduced serum cholesterol levels in all adult offspring from HFD mothers and increased it in adult female offspring from LFD mothers. Resveratrol increased visceral adipose tissue (VAT) in LFD offspring in both sexes but decreased it in male HFD offspring. Resveratrol shifted the distribution of VAT adipocyte size to a significantly higher incidence of large adipocytes, regardless of sex or maternal diet. These results clearly demonstrate that maternal resveratrol intake has long-lasting effects on metabolic health of offspring in a sex specific manner with these effects being highly dependent on the maternal diet.


Subject(s)
Energy Metabolism/drug effects , Prenatal Exposure Delayed Effects/metabolism , Resveratrol/pharmacology , Animals , Body Weight/drug effects , Eating/physiology , Female , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Lipid Metabolism/drug effects , Lipids/blood , Male , Maternal Nutritional Physiological Phenomena/physiology , Metabolic Diseases/blood , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/blood , Rats , Rats, Wistar , Sex Characteristics
2.
Article in English | MEDLINE | ID: mdl-29706935

ABSTRACT

Proper nutrition is important for growth and development. Maturation of the reproductive axis and the timing of pubertal onset can be delayed when insufficient nutrition is available, or possibly advanced with nutritional abundance. The childhood obesity epidemic has been linked to a secular trend in advanced puberty in some populations. The increase in circulating leptin that occurs in association with obesity has been suggested to act as a signal that an adequate nutritional status exists for puberty to occur, allowing activation of central mechanisms. However, obesity-associated hyperleptinemia is linked to decreased leptin sensitivity, at least in adults. Here, we analyzed whether neonatal overnutrition modifies the response to an increase in leptin in peripubertal male rats, as previously demonstrated in females. Wistar rats were raised in litters of 4 (neonatal overnutrition) or 12 pups (controls) per dam. Leptin was administered sc (3 µg/g body weight) at postnatal day 35 and the rats killed 45 min or 2 h later. Postnatal overfeeding resulted in increased body weight and circulating leptin levels; however, we found no overweight-related changes in the mRNA levels of neuropeptides involved in metabolism or reproduction. In contrast, pituitary expression of luteinizing hormone (LH) beta-subunit was increased in overweight rats, as was testicular weight. There were no basal differences between L4 and L12 males or in their response to leptin administration in pSTAT3 levels in the hypothalamus at either 45 min or 2 h. In contrast, pJAK2 was found to be higher at 45 min in L4 compared to L12 males regardless of leptin treatment, while at 2 h it was higher in L4 leptin-treated males compared to L12 leptin-treated males, as well as L4 vehicle-treated rats. There were no changes in response to leptin administration in the expression of the neuropeptides analyzed. However, serum LH levels rose only in L4 males in response to leptin, but with no change in testosterone levels. In conclusion, the advancement in pubertal onset in males with neonatal overnutrition does not appear to be related to overt modifications in the central response to exogenous leptin during the peripubertal period.

3.
Endocrinology ; 159(1): 368-387, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29077836

ABSTRACT

Astrocytes participate in both physiological and pathophysiological responses to metabolic and nutrient signals. Although most studies have focused on the astrocytic response to weight gain due to high-fat/high-carbohydrate intake, surplus intake of a balanced diet also induces excess weight gain. We have accessed the effects of neonatal overnutrition, which has both age- and sex-dependent effects on weight gain, on hypothalamic inflammation/gliosis. Although both male and female Wistar rats accumulate excessive fat mass as early as postnatal day (PND) 10 with neonatal overnutrition, no increase in hypothalamic cytokine levels, markers of astrocytes or microglia, or inflammatory signaling pathways were observed. At PND 50, no effect of neonatal overnutriton was found in either sex, whereas at PND 150, males again weighed significantly more than their controls, and this was coincident with an increase in markers of inflammation and astrogliosis in the hypothalamus. Circulating triglycerides and free fatty acids were also elevated in these males, but not in females or in either sex at PND 10. Thus, the effects of fatty acids and estrogens on astrocytes in vitro were analyzed. Our results indicate that changes in circulating fatty acid levels may be involved in the induction of hypothalamic inflammation/gliosis in excess weight gain, even on a normal diet, and that estrogens could participate in the protection of females from these processes. In conclusion, the interaction of developmental influences, dietary composition, age, and sex determines the central inflammatory response and the associated long-term outcomes of excess weight gain.


Subject(s)
Astrocytes/metabolism , Gliosis/etiology , Hyperphagia/physiopathology , Hypothalamic Diseases/etiology , Hypothalamus/metabolism , Microglia/metabolism , Adiposity , Age Factors , Animals , Animals, Newborn , Astrocytes/immunology , Astrocytes/pathology , Biomarkers/metabolism , Cells, Cultured , Cytokines/metabolism , Female , Gene Expression Regulation, Developmental , Gliosis/immunology , Gliosis/metabolism , Gliosis/pathology , Hypothalamic Diseases/immunology , Hypothalamic Diseases/metabolism , Hypothalamic Diseases/pathology , Hypothalamus/immunology , Hypothalamus/pathology , Inflammation Mediators/metabolism , Male , Microglia/immunology , Microglia/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Rats, Wistar , Sex Characteristics , Signal Transduction , Weight Gain
4.
Endocrinology ; 159(2): 810-825, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29186387

ABSTRACT

Poor maternal nutrition can have detrimental long-term consequences on energy homeostasis in the offspring. Resveratrol exerts antioxidant and antiobesity actions, but its impact during development remains largely unknown. We hypothesized that resveratrol intake during pregnancy and lactation could improve the effects of poor maternal nutrition on offspring metabolism. Wistar rats received a low-fat diet (LFD; 10.2% kcal from fat) or high-fat diet (HFD; 61.6% kcal from fat), with half of each group receiving resveratrol in their drinking water (50 mg/L) during pregnancy and lactation. Body weight (BW) of dams was measured at treatment onset and weaning [postnatal day (PND) 21] and of pups at birth and PND21, at which time dams and pups were euthanized. Although HFD dams consumed more energy, their BW at the end of lactation was unaffected. Mean litter size was not modified by maternal diet or resveratrol. At birth, male offspring from HFD and resveratrol (HFD + R) dams weighed less than those from LFD and resveratrol (LFD + R) dams. On PND21, pups of both sexes from HFD dams weighed more, had more visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT), and had higher serum leptin levels than those from LFD dams. Resveratrol reduced BW, leptin, VAT, and SCAT, with females being more affected, but increased glycemia. Neuropeptide levels were unaffected by resveratrol. In conclusion, resveratrol intake during pregnancy and lactation decreased BW and adipose tissue content in offspring of dams on an HFD but did not affect offspring from LFD-fed dams, suggesting that the potential protective effects of resveratrol during gestation/lactation are diet dependent.


Subject(s)
Lactation/drug effects , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects/metabolism , Stilbenes/pharmacology , Animal Nutritional Physiological Phenomena/drug effects , Animals , Eating/physiology , Female , Lactation/metabolism , Male , Maternal Nutritional Physiological Phenomena/drug effects , Pregnancy , Rats , Rats, Wistar , Resveratrol , Sex Characteristics
5.
Front Neuroendocrinol ; 48: 3-12, 2018 01.
Article in English | MEDLINE | ID: mdl-28552663

ABSTRACT

Males and females have distinct propensities to develop obesity and its related comorbidities, partially due to gonadal steroids. There are sex differences in hypothalamic neuronal circuits, as well as in astrocytes, that participate in metabolic control and the development of obesity-associated complications. Astrocytes are involved in nutrient transport and metabolism, glucose sensing, synaptic remodeling and modulation of neuronal signaling. They express receptors for metabolic hormones and mediate effects of these metabolic signals on neurons, with astrogliosis occurring in response to high fat diet and excess weight gain. However, most studies of obesity have focused on males. Recent reports indicate that male and female astrocytes respond differently to metabolic signals and this could be involved in the differential response to high fat diet and the onset of obesity-associated pathologies. Here we focus on the sex differences in response to obesogenic paradigms and the possible role of hypothalamic astrocytes in this phenomenon.


Subject(s)
Astrocytes/metabolism , Gonadal Steroid Hormones/metabolism , Hypothalamus/metabolism , Obesity/metabolism , Sex Characteristics , Animals , Female , Humans , Male
6.
Front Mol Neurosci ; 10: 330, 2017.
Article in English | MEDLINE | ID: mdl-29114202

ABSTRACT

An excess of saturated fatty acids can be toxic for tissues, including the brain, and this has been associated with the progression of neurodegenerative diseases. Since palmitic acid (PA) is a free fatty acid that is abundant in the diet and circulation and can be harmful, we have investigated the effects of this fatty acid on lipotoxicity in hippocampal astrocytes and the mechanism involved. Moreover, as males and females have different susceptibilities to some neurodegenerative diseases, we accessed the responses of astrocytes from both sexes, as well as the possible involvement of estrogens in the protection against fatty acid toxicity. PA increased endoplasmic reticulum stress leading to cell death in astrocytes from both males and females. Estradiol (E2) increased the levels of protective factors, such as Hsp70 and the anti-inflammatory cytokine interleukin-10, in astrocytes from both sexes. In male astrocytes, E2 decreased pJNK, TNFα, and caspase-3 activation. In contrast, in female astrocytes E2 did not affect the activation of JNK or TNFα levels, but decreased apoptotic cell death. Hence, although E2 exerted protective effects against the detrimental effects of PA, the mechanisms involved appear to be different between male and female astrocytes. This sexually dimorphic difference in the protective mechanisms induced by E2 could be involved in the different susceptibilities of males and females to some neurodegenerative processes.

7.
Article in English | MEDLINE | ID: mdl-28377744

ABSTRACT

Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.

8.
J Mol Endocrinol ; 58(1): R59-R71, 2017 01.
Article in English | MEDLINE | ID: mdl-27864453

ABSTRACT

The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.


Subject(s)
Energy Metabolism , Neuroglia/metabolism , Animals , Astrocytes/metabolism , Ependymoglial Cells/metabolism , Female , Gliosis/metabolism , Gliosis/pathology , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Male , Microglia/metabolism , Neurons/metabolism , Sex Factors
9.
Biol Sex Differ ; 7: 26, 2016.
Article in English | MEDLINE | ID: mdl-27195103

ABSTRACT

BACKGROUND: Males and females respond differently to diverse metabolic situations. Being raised in a small litter is reported to cause overnutrition that increases weight gain and predisposes an individual to metabolic disturbances in adulthood; however, existing data are inconsistent. Indeed, significant weight gain and/or metabolic disturbances, such as hyperinsulinemia and hyperleptinemia, are sometimes not encountered. We hypothesized that these inconsistencies could be due to the animal's sex and/or age at which metabolic parameters are measured. METHODS: To analyze the effects of neonatal overnutrition, male and female Wistar rats were raised in litters of 4 or 12 pups/dam and killed at postnatal days (PND) 10, 21, 30, 50, 85, or 150. In a second study to determine if neonatal sex steroid levels influence sex differences in metabolic parameters, female rats were treated with testosterone on PND1. Effects on weight, length, fat pads, adipokine production, and serum levels of glucose, metabolic hormones, and cytokines were analyzed in both studies. RESULTS: By PND10, both males and females raised in small litters had increased body weight, body length, adiposity, and serum glucose, insulin, leptin, and adiponectin levels. Females had a greater increase in inguinal fat, and males had higher expression of leptin messenger RNA (mRNA) and serum insulin, as well as increased testosterone levels. Most of the litter size effects diminished or disappeared after weaning and reappeared during adulthood in males, with sex differences in body size and adiposity being apparent postpubertally. Treatment of females with testosterone on PND1 tended to masculinize some metabolic parameters in adulthood such as increased body weight and serum leptin levels. CONCLUSIONS: Our results indicate that (1) both sex and age determine the response to neonatal overnutrition; (2) differences in neonatal sex steroid levels may participate in the development of sex differences in metabolic parameters in adulthood and possibly in the response to neonatal overnutrition; and (3) the comparison of circulating hormone and cytokine levels, even in normal control animals, should take into consideration the early neonatal nutritional environment.

10.
Prog Neurobiol ; 144: 68-87, 2016 09.
Article in English | MEDLINE | ID: mdl-27000556

ABSTRACT

The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.


Subject(s)
Astrocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypothalamus/metabolism , Obesity/metabolism , Signal Transduction/physiology , Animals , Humans
11.
Sci Rep ; 6: 23673, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27026049

ABSTRACT

Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons.


Subject(s)
Astrocytes/metabolism , Ghrelin/physiology , Glucose Transporter Type 2/metabolism , Receptors, Ghrelin/metabolism , Animals , Cells, Cultured , Glucose/metabolism , Glutamic Acid/metabolism , Hypothalamus/cytology , Male , Mice, Knockout , Rats, Wistar , Receptors, Ghrelin/genetics
12.
Article in English | MEDLINE | ID: mdl-25859240

ABSTRACT

The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.

13.
Endocrinology ; 156(4): 1272-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25574789

ABSTRACT

Pubertal onset may be advanced by obesity, with leptin potentially acting as a permissive factor. We hypothesized that having increased body weight (BW) prepubertally affects the ability of leptin to activate intracellular signaling pathways and modulate the expression of hypothalamic neuropeptides involved in reproduction and metabolism. Because being raised in small litters (SLs) tends to increase BW at weaning, female rats were raised in litters of 4 or large litters (LLs) of 12 pups. Leptin (3 µg/g BW) or vehicle (saline) was injected sc at postnatal day (PND) 21 and 30. Rats raised in SLs weighed more at both ages, but relative visceral and subcutaneous fat was increased only on PND21. Serum leptin levels were not different at PND21 or PND30. At PND21, key elements of intracellular leptin signaling (phosphorylated signal transducer and activator of transcription 3 and phosphorylated Akt [p-Akt]) were lower in SL than in LL rats. Leptin injection stimulated phosphorylated signal transducer and activator of transcription 3 in both groups, with a greater increase in LL, whereas p-Akt rose only in SL rats. At PND30, basal leptin signaling did not differ between LL and SL rats. Leptin activation of Akt was similar at 45 minutes, but at 2 hours p-AKT levels were higher in SL than in LL rats, as was the decrease in neuropeptide Y mRNA and increase in pro-opiomelanocortin mRNA levels. No change in the reproductive axis was found. Thus, being raised in SLs increases BW and visceral body fat content, fails to increase plasma leptin concentrations, and increases the leptin responsiveness of both neuropeptide Y and pro-opiomelanocortin cells in the prepubertal hypothalamus.


Subject(s)
Body Weight/physiology , Leptin/pharmacology , Neurons/metabolism , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism , Sexual Maturation/physiology , Animals , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Leptin/blood , Neurons/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, Leptin/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
14.
Nat Neurosci ; 17(7): 908-10, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24880214

ABSTRACT

We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.


Subject(s)
Astrocytes/physiology , Eating/physiology , Hypothalamus/physiology , Leptin/physiology , Nerve Net/physiology , Neurons/physiology , Signal Transduction/physiology , Animals , Cell Count , Excitatory Postsynaptic Potentials/physiology , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hypothalamus/cytology , Immunohistochemistry , In Situ Hybridization , Leptin/genetics , Male , Melanocortins/physiology , Mice , Mice, Knockout , Microscopy, Electron , Primary Cell Culture , Pro-Opiomelanocortin/physiology , Pulmonary Gas Exchange/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
15.
Endocrinology ; 155(8): 2868-80, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24848869

ABSTRACT

Ghrelin is an endogenous hormone that stimulates appetite and adipose tissue accrual. Both the acylated (AG) and non-acylated (DAG) isoforms of this hormone are also reported to exert anti-inflammatory and protective effects systemically and in the central nervous system. As inflammatory processes have been implicated in obesity-associated secondary complications, we hypothesized that this natural appetite stimulator may protect against negative consequences resulting from excessive food intake. Adult male Wistar rats were treated icv (5 µg/day) with AG, DAG, the ghrelin mimetic GH-releasing peptide (GHRP)-6, AG, and pair-fed with controls (AG-pf) or saline for 14 days. Regardless of food intake AG increased visceral adipose tissue (VAT) and decreased circulating cytokine levels. However, AG reduced cytokine production in VAT only in rats fed ad libitum. Hypothalamic cytokine production was increased in AG-treated rats fed ad libitum and by DAG, but intracellular inflammatory signaling pathways associated with insulin and leptin resistance were unaffected. Gliosis was not observed in response to any treatment as glial markers were either reduced or unaffected. AG, DAG, and GHRP-6 stimulated production of hypothalamic insulin like-growth factor I that is involved in cell protective mechanisms. In hypothalamic astrocyte cell cultures AG decreased tumor necrosis factorα and DAG decreased interleukin-1ß mRNA levels, suggesting direct anti-inflammatory effects on astrocytes. Thus, whereas ghrelin stimulates food intake and weight gain, it may also induce mechanisms of cell protection that help to detour or delay systemic inflammatory responses and hypothalamic gliosis due to excess weight gain, as well as its associated pathologies.


Subject(s)
Eating/physiology , Ghrelin/physiology , Hypothalamus/metabolism , Inflammation Mediators/metabolism , Weight Gain/physiology , Acylation , Adiposity , Animals , Cytokines/metabolism , Hypothalamus/pathology , Insulin-Like Growth Factor I/metabolism , Male , Rats , Rats, Wistar
16.
Adipocyte ; 2(3): 128-34, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23991358

ABSTRACT

Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes.

17.
Endocrinology ; 154(7): 2318-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23671260

ABSTRACT

Hypothalamic inflammation and gliosis are proposed to participate in the pathogenesis of high-fat diet-induced obesity. Because other factors and nutrients also induce weight gain and adiposity, we analyzed the inflammatory and glial responses to a sucrose (S)-enriched diet. Neonatal overnutrition (NON) exacerbates weight gain in response to metabolic challenges; thus, we compared the inflammatory response of male Wistar rats with NON (4 pups/litter) and controls (12 pups/litter) to increased S intake. At weaning rats received water or a 33% sucrose solution and normal chow ad libitum for 2 months. Sucrose increased serum IL-1ß and -6 and hypothalamic IL-6 mRNA levels in NON and TNFα mRNA levels in control and NON rats, whereas NON alone had no effect. The astrocyte marker glial fibrillary acidic protein was increased by NON but decreased by S. This was associated with hypothalamic nuclei specific changes in glial fibrillary acidic protein-positive cell number and morphology. Sucrose increased the number of microglia and phosphorylation of inhibitor of -κB and c-Jun N-terminal kinase in control but not NON rats, with no effect on microglia activation markers. Proteins highly expressed in astrocytes (glutamate, glucose, and lactate transporters) were increased by NON but not S, with no increase in vimentin expression in astrocytes, further suggesting that S-induced adiposity is not associated with hypothalamic astrogliosis. Hence, activation of hypothalamic inflammatory processes and gliosis depend not only on weight gain but also on the diet inducing this weight gain and the early nutritional status. These diverse inflammatory processes could indicate a differential disposition to obesity-induced pathologies.


Subject(s)
Gliosis/chemically induced , Hypothalamus/drug effects , Hypothalamus/immunology , Inflammation/chemically induced , Sucrose/pharmacology , Adiposity/drug effects , Animals , Animals, Newborn , Astrocytes/cytology , Astrocytes/drug effects , Blotting, Western , Hypothalamus/metabolism , Immunohistochemistry , Interleukin-1beta/blood , Interleukin-6/blood , Interleukin-6/genetics , Male , Neuroglia/cytology , Neuroglia/drug effects , Rats , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/genetics , Weight Gain/drug effects
18.
J Clin Invest ; 122(11): 3900-13, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23064363

ABSTRACT

Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Astrocytes/metabolism , Dietary Fats/adverse effects , Glucose Transport Proteins, Facilitative/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Obesity/metabolism , Animals , Astrocytes/pathology , Dietary Fats/pharmacology , Hypothalamus/pathology , Mice , Neurons/metabolism , Neurons/pathology , Obesity/chemically induced , Obesity/pathology , Pro-Opiomelanocortin/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...