Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904027

ABSTRACT

One of the diseases with the greatest economic impact on coffee cultivation worldwide and particularly in Peru is coffee rust (Hemileia vastatrix). The search for sustainable control methods as disease management strategies in coffee cultivation is necessary. The objective of this research was to determine the effectiveness of five biopesticides based on lemon verbena (Cymbopogon citratus) for the control of rust applied in laboratory and field conditions to allow the recovery of coffee (Coffea arabica L. var. typica) in La Convención, Cusco, Peru. Five biopesticides (oil, macerate, infusion, hydrolate and Biol) and four concentrations (0, 15, 20 and 25%) were evaluated. The biopesticides were evaluated under laboratory conditions (light and dark) at different concentrations. The design used was completely randomized in a factorial scheme. The biopesticides were incorporated into the culture medium and inoculated with 400 uredospores of rust, and the germination percentage was evaluated. Under field conditions, the biopesticides at the same concentrations were evaluated for 4 weeks after application. Under these field conditions, the incidence, severity and area under the disease progress curve (AUDPC) of selected plants with a natural degree of infection were evaluated. In the laboratory, the results showed that all biopesticides were effective in reducing the germination of rust uredospores to values <1% of germination in relation to the control, which showed values of 61% and 75% in the light and dark, respectively, independent of the concentration used, with no significant differences between them. In the field, 25% oil promoted the best response with values <1% and 0% incidence and severity, respectively, in the first two weeks after application. The AUDPC for this same treatment showed values of 7 in relation to 1595 of the control. Cymbopogon citratus oil is an excellent biopesticide that can be used to control coffee rust.

2.
PeerJ ; 9: e12297, 2021.
Article in English | MEDLINE | ID: mdl-34754617

ABSTRACT

This study was carried out during January 2020-December 2020 in a semi-desert ecosystem in southern Sonora, Mexico, to determine the annual and daily variations in water potential and the normalized difference vegetation index (NDVI) of Bursera fagaroides Engl., Monogr. Phan., Parkinsonia aculeata L., Sp. Pl.; Prosopis laevigata (Humb. & Bonpl. ex Willd.), and Atriplex canescens (Pursh) Nutt. Soil electrical conductivity, cation content, and physical characteristics were determined at two depths, and water potential (ψ) was measured in roots, stems, and leaves. The daily leaf ψ was measured every 15 days each month to determine the duration of stress (hours) and the stress intensity (SI). The electrical conductivity determinations classified the soil in the experimental area as strongly saline. A significant difference was noted in electrical conductivity between soil depths. The four studied species showed significant gradients of ψ in their organs. In this soil, all four species remained in a stressed condition for approximately 11 h per day. The mean SI was 27%, and B. fagaroides Engl., Monogr. Phan. showed the lowest value. The four species showed increased NDVI values during the rainy months, with P. laevigata (Humb. & Bonpl. ex Willd.) and Parkinsonia aculeata L., Sp. Pl. showing the highest values. The capacity for ψ decrease under saline conditions identified A. canescens (Pursh) Nutt., B. fagaroides Engl., Monogr. Phan. and P. aculeata L., Sp. Pl. as practical and feasible alternatives for establishment in saline soils in southern Sonora for purposes of soil recovery and reforestation.

3.
PeerJ ; 7: e7029, 2019.
Article in English | MEDLINE | ID: mdl-31223527

ABSTRACT

An experiment was carried out to evaluate the effect of increased temperature on roots and leaf water and osmotic potential, osmotic adjustment (OA) and transpiration on Triticum durum L. (CIRNO C2008 variety) during growth (seedling growth), tillering and heading phenophases. Wheat was sown under field conditions at the Experimental Technology Transfer Center (CETT-910), as a representative wheat crop area from the Yaqui Valley, Sonora México. Thermal radiators were placed at 1.20 m from the crop canopy. Treatments included warmed plots (2 °C) and ambient canopy temperature with five replicates. Temperature treatment was controlled using a (proportional, integrative, derivative) feedback control system on plots covering a circular area of r = 1.5 m. Results indicated a significant decrease in the osmotic potential of roots and leaves for the warmed plots. Water potential, under warming treatment, also experienced a significant reduction and a potential gradient was observed in both, roots and leaves, while the phenophases were delayed. Such results demonstrate that, under warmer conditions, plants increase water absorption for cooling. Hence, transpiration experienced a significant increase under warming in all phenophases that was related to the low root and leaf water potential. CIRNO C2008 also experienced OA in all phenophases with glycine betaine as the osmolyte with major contribution.

4.
PeerJ ; 6: e5064, 2018.
Article in English | MEDLINE | ID: mdl-29942702

ABSTRACT

This work evaluates the experimental warming effects on phenology and grain yield components of wheat in the Yaqui Valley, Sonora, México, using CIRNO C2008 variety from Triticum durum L., as a model during the cropping cycle of 2016-2017 (December to April). Infrared radiators were deployed to induce experimental warming by 2 °C above ambient crop canopy temperature, in a temperature free-air controlled enhancement system. Temperature was controlled by infrared temperature sensors placed in eight plots which covered a circle of r = 1.5 m starting five days after germination until harvest. The warming treatment caused a reduction of phenophases occurrence starting at the stem extension phenophase. Such phenological responses generated a significant biological cycle reduction of 14 days. Despite this delay, CIRNO C2008 completed its biological cycle adequately. However, plant height under the warming treatment was reduced significantly and differences were particularly observed at the final phenophases of the vegetative cycle. Plant height correlated negatively with spikes length, spikes mass, and number of filled grains. Warming also reduced grain yield in 33%. The warming treatment caused a stress intensity (SI = 1-yield warming/yield control) of 39.4% and 33.2% in biomass and grain yield, respectively. The differences in stress intensities between biomass and grain yield were based on plant height reduction. Grain mass was not affected, demonstrating the crop capability for remobilization and adequate distribution of elaborated substances for the spikes under warming conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...