Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(24): 30997-31010, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38838270

ABSTRACT

The importance of amyloid nanofibrils made from food proteins is rising in diverse fields, such as biomedicine and food science. These protein nanofibrils (PNFs) serve as versatile and sustainable building blocks for biomaterials, characterized by their high ß-sheet content and an ordered hydrogen bond network. These properties offer both stability and flexibility, along with an extreme aspect ratio and reactive functional groups. Plant-derived amyloid nanofibrils, such as soy protein isolate (SPI) PNFs, are increasingly favored due to their affordability and sustainability compared with animal proteins. This study aimed to explore the formation and application of SPI amyloid-like aggregates (SPIA) and their nanoencapsulation of curcumin (Cur) for biomedical purposes, particularly in wound healing. Under specific conditions of low pH and high temperature, SPIA formed, exhibited an amyloid nature, and successfully encapsulated Cur, thereby enhancing its stability and availability. Spectroscopic and microscopic analyses confirmed structural changes in SPIA upon the incorporation of Cur and the fabrication of SPIA@Cur. The obtained results indicate that in the presence of Cur, SPIA forms faster, attributed to accelerated SPI denaturation, an increased nucleation rate, and enhanced self-assembly facilitated by Cur's hydrophobic interactions and π-π stacking with SPI peptides. In vitro studies demonstrated the biocompatibility, biodegradability, and antioxidant properties of SPIA@Cur along with controlled release behavior. In vivo experiments in male Wistar rats revealed that both SPIA and SPIA@Cur significantly accelerate wound closure compared with untreated wounds, with SPIA@Cur showing slightly better efficacy. The histological analysis supported enhanced wound healing, indicating the potential of SPIA@Cur for biomedical applications.


Subject(s)
Amyloid , Curcumin , Soybean Proteins , Wound Healing , Curcumin/chemistry , Curcumin/pharmacology , Wound Healing/drug effects , Soybean Proteins/chemistry , Soybean Proteins/pharmacology , Animals , Amyloid/chemistry , Amyloid/metabolism , Rats , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Nanofibers/chemistry
2.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38440998

ABSTRACT

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Subject(s)
Blood-Brain Barrier , Cell-Penetrating Peptides , Drug Delivery Systems , Nanoparticles , Neurodegenerative Diseases , Parkinson Disease , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Drug Delivery Systems/methods , Nanoparticles/chemistry , Neurodegenerative Diseases/drug therapy , Animals , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy
3.
Int J Biol Macromol ; 263(Pt 1): 130261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368978

ABSTRACT

αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.


Subject(s)
Copper , alpha-Crystallin B Chain , Humans , Copper/chemistry , alpha-Crystallin B Chain/chemistry , Molecular Chaperones , Homeostasis , Ions
4.
Curr Res Struct Biol ; 4: 356-364, 2022.
Article in English | MEDLINE | ID: mdl-36523328

ABSTRACT

Protein oligomerization has two notable aspects: it is crucial for the performing cellular and molecular processes accurately, and it produces amyloid fibril precursors. Although a clear explanation for amyloidosis as a whole is lacking, most studies have emphasized the importance of protein misfolding followed by formation of cytotoxic oligomer structures, which are responsible for disorders as diverse as neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and metabolic disorders, such as type 2 diabetes. Constant surveillance by oligomeric protein structures known as molecular chaperones enables cells to overcome the challenge of misfolded proteins and their harmful assemblies. These molecular chaperones encounter proteins in cells, and benefit cell survival as long as they perform correctly. Thus, this review highlights the roles of structural aspects of chaperone protein oligomers in determining cell fate-either succumbing to amyloid oligomers or survival-as well as experimental approaches used to investigate these entities.

5.
J Phys Chem B ; 126(8): 1640-1654, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35090112

ABSTRACT

Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.4 with agitation, referred to as mTTR aggregation and fibrillation, respectively. The findings suggest that early-stage conformational changes termed monomer activation here determine the aggregation pathway, resulting in developing either amorphous aggregates or well-organized fibrils. Less packed partially unfolded monomers consisting of more non-regular secondary structures that were rapidly produced via a mildly acidic condition form amorphous aggregates. Meanwhile, more hydrophobic and packed monomers consisting of rearranged ß sheets and increased helical content developed well-organized fibrils. Conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with leucine and glutamine (L-SPIONs and G-SPIONs in order) via a trimethoxysilane linker provided the chance to study the effect of hydrophobic/hydrophilic surfaces on mTTR aggregation. The results indicated a powerful inhibitory effect of hydrophobic L-SPIONs on both mTTR aggregation and fibrillation. Monomer depletion was introduced as the governing mechanism for inhibiting mTTR aggregation, while a chaperone-like property of L-SPIONs by maintaining an mTTR native structure and adsorbing oligomers suppressed the progression of further fibril formation.


Subject(s)
Amino Acids , Amyloid , Amyloid/chemistry , Magnetic Iron Oxide Nanoparticles , Molecular Chaperones/metabolism , Protein Conformation, beta-Strand , Protein Structure, Secondary
6.
Iran J Biotechnol ; 13(4): 10-16, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28959304

ABSTRACT

BACKGROUND: There is a growing demand for mass production of shikalkin (a natural pigment consisted of shikonin and alkannin) due to its increasing applications in cosmetics, pharmaceutical and nutrition industries. The root of Iranian Arnebia euchroma produces shikalkin. The promising capability of this plant for shikalkin production has already been demonstrated in cell culture studies. OBJECTIVES: Elicitation effect of Rhizoctonia solani (R. solani) in comparison with the effects of Cu2+, methyl jasmonate (MJ), and salicylic acid (SA) on the shikalkin production was investigated in A. euchroma callus. MATERIALS AND METHODS: The calli from different origins (leaf, collar and root) were proliferated on a modified Linsmaier-Skoog (mLS) medium and were subsequently transferred onto the pigment production medium containing various amounts of the desirable elicitor. Observations were quantified and the pigment production was precisely measured spectrophotometrically. RESULTS: Pigment biosynthesis was induced on White medium containing IAA (1 µM) and kinetin (10 µM) in dark at 25°C. Use of R. solani increased the pigment production by 7 fold greater than normal White medium. Cu2+ only doubled the shikalkin production. MJ and SA showed enhancing effects comparable to that of Cu2+. DISCUSSIONS: It is assumed that upon binding of the polysaccharides of the fungal cells to the plant cell surface, a cascade of signaling is initiated that led to expression of genes involving in the biosynthesis of shikalkin.

SELECTION OF CITATIONS
SEARCH DETAIL
...