Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 88: 105551, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36603778

ABSTRACT

The Yeast Estrogen Screen (YES) has a specific mechanism of action that allows for the analysis of estrogenic EDC at low concentrations, and it has been broadly used to estimate the estrogenic potential of environmental samples. However, the experimental parameters of this assay still demand an investigation, such as cell density, incubation time, wavelength on the experimental outcome, cytotoxicity, and estrogenic activity adsorbed on suspended solids. We studied these interferences and applied the assay to single substances, mixtures, and environmental matrices from different sources. The increase in cell density amplifies the assay sensitivity only to a limited extent, while the reduction in incubation time decreased assay sensitivity - although it was not significant for surface water, no differences were observed between estradiol-equivalents derived of 48 h and 72 h measurements. The particulate phase was of utmost importance for the total estrogenic activity of the landfill leachate and surface water. Surface waters, landfill leachates and sediments also showed antiestrogenic activity and the integration of both estrogenic and antiestrogenic endpoints provided deeper insights into the potential risk associated with EDC. This study elucidated experimental interferences that may arise during the implementation and use of this assay, bringing more understanding to experimental parameters during the application of the assay for estrogenicity screening.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Saccharomyces cerevisiae , Endocrine Disruptors/toxicity , Environmental Monitoring , Estrogens/toxicity , Estrogens/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Biological Assay , Water
2.
Chemosphere ; 310: 136917, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36272630

ABSTRACT

The presence of estrogenic endocrine disruptors in aquatic environments has been a concern and bioassays are recommended tools for their monitoring. However, the physicochemical properties of contaminants and the environmental matrix features may influence the resultant response. This study aimed to assess this influence on the Yeast Estrogen Screen (YES) assay. Mixtures of 17ß-estradiol (E2) and humic acid (HA) were evaluated through the Schild approach aiming to investigate the interactions between estrogens and dissolved organic matter (DOM). Moreover, environmental samples from municipal landfill leachate and wastewater treatment plant (WWTP) influents and effluents were screened for (anti)estrogenic activity at both dissolved and particulate phases. Finally, results were statistically confronted with physicochemical parameters through principal component analysis (PCA). The HA test concentrations strongly reduced the E2 response, even at low levels. Humic substances may not only reduce estrogen bioavailability, but also interfere with the assay mechanism through enzymatic inhibition thus masking the sample estrogenic potential. Landfill leachate had total E2-Eq in the range 1282-2591 ng L-1, while WWTP influent and effluent were in the range 12.1-41.4 and

Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Dissolved Organic Matter , Estrogens/analysis , Estradiol/analysis , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Estrone/analysis , Estrogen Antagonists/analysis , Environmental Monitoring/methods
3.
Ecotoxicol Environ Saf ; 208: 111574, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396100

ABSTRACT

Endocrine disrupting chemicals (EDC) are exogenous substances that can potentially mimic hormonal substances and cause adverse effects on the endocrine system of living beings. The behavior and fate of these compounds in the environment is directly related to their physical-chemical properties, which indicate great affinity for solid and organic particles and suggest an inherent mechanism of fractionation between dissolved and particulate phases of aqueous matrices. However, few studies have been considering this fact when quantifying these pollutants and their effects through bioassays. In this study, the fractionation of estrogenic substances between dissolved and particulate phases in an urban stream was investigated via estrogenic activity evaluation by the YES assay. Two fractions of suspended solids (< 0.7 µm and between 0.45 and 0.7 µm) and the dissolved phase were considered and two approaches of SPE percolations were applied. Total estradiol equivalent (E2-Eq) values were observed in the 29-65 ng L-1 range, of which 35-62% were associated with the particulate phase. Most of the estrogenicity was associated with particles between 0.45 and 0.7 µm, whereas cytotoxicity was induced by extracts of particles greater than 0.7 µm. Results demonstrated the importance of solid fractions analysis towards the quantification of total estrogenic activity from aqueous environmental matrices and highlights the relevance of controlling fine suspended solids in sewage treatment plant effluents, regarding the control of endocrine disrupters in the environment.


Subject(s)
Biological Assay/methods , Endocrine Disruptors/toxicity , Water Pollutants, Chemical/toxicity , Endocrine System , Environmental Monitoring/methods , Estrogens/toxicity , Rivers/chemistry , Sewage/chemistry , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...