Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Domest Anim ; 55(8): 974-983, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32506705

ABSTRACT

The female reproductive tract, in particular the composition of the uterine and oviduct fluids, is responsible, at least in part, for triggering sperm cell modifications, essential for the acquisition of fertilization ability. Hyaluronic acid (HA) is a glycosaminoglycan present in these fluids, and its role in the fertilization process and sperm functionality is still barely understood. This work was designed to (a) determine the rheological characteristics of the fertilization medium by the addition of HA and (b) determine the HA influence on sperm motility and functional status. To that end, the in vitro fertilization medium was supplemented with 4 doses of HA (6, 60, 600 and 6,000 µg/ml) and analysed for viscosity and adhesion strength characteristics. Then, thawed semen from 6 bulls were incubated in these media and assessed at 4 different moments for morphological and functional parameters (plasma and acrosomal membrane integrities, mitochondrial membrane potential, capacitation, acrosomal reaction, and motility). The rheological evaluation showed that the addition of HA was able to increase both the viscosity and the adhesion strength of the fertilization medium, especially in the 6,000 µg/ml group in which the effect was more pronounced. No influence of HA could be observed on mitochondrial potential, and acrosomal and plasma membrane integrities. However, HA supplementation, at lower doses, led to an increase in the number of reacted sperm, as well as changes in motility parameters, with increase in the number of motile, rapid and progressive spermatozoa. In conclusion, the addition of HA alters the rheological properties of the fertilization medium and leads to the improvement of the properties related to sperm motility and capacitation, without compromising other functional aspects of the cell.


Subject(s)
Hyaluronic Acid/pharmacology , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Viscosity , Acrosome , Animals , Cattle , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Male , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...