Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
JID Innov ; 3(1): 100154, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36561914

ABSTRACT

Inflammatory edema formation and polymorphonuclear leukocyte (neutrophil) accumulation are common components of cutaneous vascular inflammation, and their assessment is a powerful investigative and drug development tool but typically requires independent cohorts of animals to assess each. We have established the use of a mathematical formula to estimate the ellipsoidal-shaped volume of the edematous wheal or bleb after intradermal injections of substances in mice pretreated intravenously with Evans blue dye (which binds to plasma albumin) to act as an edema marker. Whereas previous extraction of Evans blue dye with formamide is suitable for all strains of mice, we report this quicker and more reliable assessment of edema volume in situ. This therefore allows neutrophil accumulation to be assessed from the same mouse using the myeloperoxidase assay. Importantly, we examined the influence of Evans blue dye on the spectrometry readout at the wavelength at which myeloperoxidase activity is measured. The results indicate that it is feasible to quantify edema formation and neutrophil accumulation in the same mouse skin site. Thus, we show techniques that can assess edema formation and neutrophil accumulation at the same site in the same mouse, allowing paired measurements and reducing the total use of mice by 50%.

2.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293102

ABSTRACT

Oedema formation and polymorphonuclear leukocyte (neutrophil) accumulation are involved in both acute and chronic inflammation. Calcitonin gene-related peptide (CGRP) is a sensory neuropeptide that is released from stimulated sensory nerves. CGRP is a potent vasodilator neuropeptide, especially when administered to the cutaneous microvasculature, with a long duration of action. Here, we have investigated the ability of vasodilator amounts of CGRP to modulate oedema formation and neutrophil accumulation induced in the cutaneous microvasculature of the mouse. To learn more about the mechanism of action of endogenous CGRP, we have investigated the response to the inflammatory stimulants tumour necrosis factor alpha (TNFα) and carrageenan in three different murine models: a model where sensory nerves were depleted by resiniferatoxin (RTX); a pharmacological method to investigate the effect of a selective CGRP receptor antagonist; and a genetic approach using wildtype (WT) and αCGRP knockout (KO) mice. Our results show that exogenous CGRP potentiates oedema formation induced by substance P (SP) and TNFα. This is further supported by our findings from sensory nerve-depleted mice (in the absence of all neuropeptides), which indicated that sensory nerves are involved in mediating the oedema formation and neutrophil accumulation induced by TNFα, and also carrageenan in cutaneous microvasculature. Furthermore, endogenous CGRP was shown to contribute to this inflammatory response as carrageenan-induced oedema formation is attenuated in WT mice treated with the CGRP receptor antagonist, and in αCGRPKO mice. It is therefore concluded that CGRP can contribute to inflammation by promoting oedema formation in skin, but this response is dependent on the pro-inflammatory stimulus and circumstance.


Subject(s)
Calcitonin Gene-Related Peptide , Neuropeptides , Mice , Animals , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Substance P/adverse effects , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Carrageenan/adverse effects , Edema/chemically induced , Edema/pathology , Inflammation/pathology , Neuropeptides/pharmacology , Skin/pathology , Vasodilator Agents/pharmacology , Mice, Knockout
3.
Front Physiol ; 13: 833645, 2022.
Article in English | MEDLINE | ID: mdl-35283798

ABSTRACT

The treatment of hypertension and heart failure remains a major challenge to healthcare providers. Despite therapeutic advances, heart failure affects more than 26 million people worldwide and is increasing in prevalence due to an ageing population. Similarly, despite an improvement in blood pressure management, largely due to pharmacological interventions, hypertension remains a silent killer. This is in part due to its ability to contribute to heart failure. Development of novel therapies will likely be at the forefront of future cardiovascular studies to address these unmet needs. Calcitonin gene-related peptide (CGRP) is a 37 amino acid potent vasodilator with positive-ionotropic and -chronotropic effects. It has been reported to have beneficial effects in hypertensive and heart failure patients. Interestingly, changes in plasma CGRP concentration in patients after myocardial infarction, heart failure, and in some forms of hypertension, also support a role for CGRP on hemodynamic functions. Rodent studies have played an important role thus far in delineating mechanisms involved in CGRP-induced cardioprotection. However, due to the short plasma half-life of CGRP, these well documented beneficial effects have often proven to be acute and transient. Recent development of longer lasting CGRP agonists may therefore offer a practical solution to investigating CGRP further in cardiovascular disease in vivo. Furthermore, pre-clinical murine studies have hinted at the prospect of cardioprotective mechanisms of CGRP which is independent of its hypotensive effect. Here, we discuss past and present evidence of vascular-dependent and -independent processes by which CGRP could protect the vasculature and myocardium against cardiovascular dysfunction.

4.
Elife ; 102021 11 02.
Article in English | MEDLINE | ID: mdl-34726597

ABSTRACT

Ageing is associated with increased vulnerability to environmental cold exposure. Previously, we identified the role of the cold-sensitive transient receptor potential (TRP) A1, M8 receptors as vascular cold sensors in mouse skin. We hypothesised that this dynamic cold-sensor system may become dysfunctional in ageing. We show that behavioural and vascular responses to skin local environmental cooling are impaired with even moderate ageing, with reduced TRPM8 gene/protein expression especially. Pharmacological blockade of the residual TRPA1/TRPM8 component substantially diminished the response in aged, compared with young mice. This implies the reliance of the already reduced cold-induced vascular response in ageing mice on remaining TRP receptor activity. Moreover, sympathetic-induced vasoconstriction was reduced with downregulation of the α2c adrenoceptor expression in ageing. The cold-induced vascular response is important for sensing cold and retaining body heat and health. These findings reveal that cold sensors, essential for this neurovascular pathway, decline as ageing onsets.


Subject(s)
Aging/physiology , Cold Temperature , TRPA1 Cation Channel/metabolism , TRPM Cation Channels/metabolism , Animals , Blood Circulation/physiology , Female , Mice , Nociception/physiology , Signal Transduction , Skin/blood supply , TRPA1 Cation Channel/agonists
5.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203675

ABSTRACT

Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Sesquiterpenes, Guaiane/pharmacology , TRPC Cation Channels/metabolism , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Behavior, Animal/drug effects , Carrageenan , Cells, Cultured , Cobalt/metabolism , Disease Models, Animal , Edema/pathology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/drug therapy , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Male , Mice, Knockout , Pain/complications , Pain/drug therapy , Pain/pathology , Phenotype , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Sesquiterpenes, Guaiane/therapeutic use
7.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056099

ABSTRACT

The transient receptor potential (TRP) channels, TRPA1 and TRPM8, are thermo-receptors that detect cold and cool temperatures and play pivotal roles in mediating the cold-induced vascular response. In this study, we investigated the role of TRPA1 and TRPM8 in the thermoregulatory behavioural responses to environmental cold exposure by measuring core body temperature and locomotor activity using a telemetry device that was surgically implanted in mice. The core body temperature of mice that were cooled at 4 °C over 3 h was increased and this was accompanied by an increase in UCP-1 and TRPM8 level as detected by Western blot. We then established an effective route, by which the TRP antagonists could be administered orally with palatable food. This avoids the physical restraint of mice, which is crucial as that could influence the behavioural results. Using selective pharmacological antagonists A967079 and AMTB for TRPA1 and TRPM8 receptors, respectively, we show that TRPM8, but not TRPA1, plays a direct role in thermoregulation response to whole body cold exposure in the mouse. Additionally, we provide evidence of increased TRPM8 levels after cold exposure which could be a protective response to increase core body temperature to counter cold.

8.
Osteoarthr Cartil Open ; 2(4): 100119, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33381767

ABSTRACT

INTRODUCTION: Osteo-arthritis (OA) involves joint degradation and usually pain; with mechanisms poorly understood and few treatment options. There is evidence that the transient receptor potential canonical 5 (TRPC5) mRNA expression is reduced in OA patients' synovia. Here we examine the profile of TRPC5 in DRG and involvement in murine models of OA. DESIGN: TRPC5 KO mice were subjected to partial meniscectomy (PMNX) or injected with monoiodoacetate (MIA) and pain-related behaviours were determined. Knee joint pathological scores were analysed and gene expression changes in ipsilateral synovium and dorsal root ganglia (DRG) determined. c-Fos protein expression in the ipsilateral dorsal horn of the spinal cord was quantified. RESULTS: TRPC5 KO mice developed a discrete enhanced pain-related phenotype. In the MIA model, the pain-related phenotype correlated with c-Fos expression in the dorsal horn and increased expression of nerve injury markers ATF3, CSF1 and galanin in the ipsilateral DRG. There were negligible differences in the joint pathology between WT and TRPC5 KO mice, however detailed gene expression analysis determined increased expression of the mast cell marker CD117 as well as extracellular matrix remodelling proteinases MMP2, MMP13 and ADAMTS4 in MIA-treated TRPC5 KO mice. TRPC5 expression was defined to sensory subpopulations in DRG. CONCLUSIONS: Deletion of TRPC5 receptor signalling is associated with exacerbation of pain-like behaviour in OA which correlates with increased expression of enzymes involved in extracellular remodelling, inflammatory cells in the synovium and increased neuronal activation and injury in DRG. Together, these results identify a modulating role for TRPC5 in OA-induced pain-like behaviours.

10.
Diabetes ; 68(9): 1841-1852, 2019 09.
Article in English | MEDLINE | ID: mdl-31217174

ABSTRACT

Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3ß phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.


Subject(s)
Capillaries/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Kidney Glomerulus/blood supply , Nogo Proteins/metabolism , Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/blood , Diabetic Nephropathies/genetics , Humans , Kidney Glomerulus/metabolism , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Nitric Oxide Synthase Type III/metabolism , Nogo Proteins/blood , Nogo Proteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
11.
J Invest Dermatol ; 139(9): 1936-1945.e3, 2019 09.
Article in English | MEDLINE | ID: mdl-30974165

ABSTRACT

Increasing evidence suggests that nerve fibers responding to noxious stimuli (nociceptors) modulate immunity in a variety of tissues, including the skin. Yet, the role of nociceptors in regulating sterile cutaneous inflammation remains unexplored. To address this question, we have developed a detailed description of the sterile inflammation caused by overexposure to UVB irradiation (i.e., sunburn) in the mouse plantar skin. Using this model, we observed that chemical depletion of nociceptor terminals did not alter the early phase of the inflammatory response to UVB, but it caused a significant increase in the number of dendritic cells and αß+ T cells as well as enhanced extravasation during the later stages of inflammation. Finally, we showed that such regulation was driven by the nociceptive neuropeptide calcitonin gene-related peptide. In conclusion, we propose that nociceptors not only play a crucial role in inflammation through avoidance reflexes and behaviors, but can also regulate sterile cutaneous immunity in vivo.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Dermatitis/immunology , Nociceptors/immunology , Skin/radiation effects , Sunburn/immunology , Animals , Calcitonin Gene-Related Peptide/genetics , Dendritic Cells/immunology , Disease Models, Animal , Diterpenes/toxicity , Female , Humans , Mice , Mice, Knockout , Nerve Fibers/drug effects , Nerve Fibers/immunology , Nerve Fibers/metabolism , Neurotoxins/toxicity , Nociceptors/drug effects , Nociceptors/metabolism , Skin/cytology , Skin/immunology , Skin/innervation , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Ultraviolet Rays/adverse effects
12.
Handb Exp Pharmacol ; 255: 1-12, 2019.
Article in English | MEDLINE | ID: mdl-30430259

ABSTRACT

Calcitonin gene-related peptide (CGRP) was discovered over about 35 years ago through molecular biological techniques. Its activity as a vasodilator and the proposal that it was involved in pain processing were then soon established. Today, we are in the interesting situation of having the approval for the clinical use of antagonists and antibodies that have proved to block CGRP activities and benefit migraine. Despite all, there is still much to learn concerning the relevance of the vasodilator and other activities as well as further potential applications of CGRP agonists and blockers in disease. This review aims to discuss the history and present knowledge and to act as an introductory chapter in this volume.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Calcitonin , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Humans , Receptors, Calcitonin Gene-Related Peptide/genetics
14.
Circulation ; 136(4): 367-383, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28446517

ABSTRACT

BACKGROUND: Research into the therapeutic potential of α-calcitonin gene-related peptide (α-CGRP) has been limited because of its peptide nature and short half-life. Here, we evaluate whether a novel potent and long-lasting (t½ ≥7 hours) acylated α-CGRP analogue (αAnalogue) could alleviate and reverse cardiovascular disease in 2 distinct murine models of hypertension and heart failure in vivo. METHODS: The ability of the αAnalogue to act selectively via the CGRP pathway was shown in skin by using a CGRP receptor antagonist. The effect of the αAnalogue on angiotensin II-induced hypertension was investigated over 14 days. Blood pressure was measured by radiotelemetry. The ability of the αAnalogue to modulate heart failure was studied in an abdominal aortic constriction model of murine cardiac hypertrophy and heart failure over 5 weeks. Extensive ex vivo analysis was performed via RNA analysis, Western blot, and histology. RESULTS: The angiotensin II-induced hypertension was attenuated by cotreatment with the αAnalogue (50 nmol·kg-1·d-1, SC, at a dose selected for lack of long-term hypotensive effects at baseline). The αAnalogue protected against vascular, renal, and cardiac dysfunction, characterized by reduced hypertrophy and biomarkers of fibrosis, remodeling, inflammation, and oxidative stress. In a separate study, the αAnalogue reversed angiotensin II-induced hypertension and associated vascular and cardiac damage. The αAnalogue was effective over 5 weeks in a murine model of cardiac hypertrophy and heart failure. It preserved heart function, assessed by echocardiography, while protecting against adverse cardiac remodeling and apoptosis. Moreover, treatment with the αAnalogue was well tolerated with neither signs of desensitization nor behavioral changes. CONCLUSIONS: These findings, in 2 distinct models, provide the first evidence for the therapeutic potential of a stabilized αAnalogue, by mediating (1) antihypertensive effects, (2) attenuating cardiac remodeling, and (3) increasing angiogenesis and cell survival to protect against and limit damage associated with the progression of cardiovascular diseases. This indicates the therapeutic potential of the CGRP pathway and the possibility that this injectable CGRP analogue may be effective in cardiac disease.


Subject(s)
Calcitonin Gene-Related Peptide/analogs & derivatives , Calcitonin Gene-Related Peptide/therapeutic use , Cardiomegaly/drug therapy , Cardiotonic Agents/therapeutic use , Heart Failure/drug therapy , Hypertension/drug therapy , Animals , Blood Flow Velocity/drug effects , Blood Flow Velocity/physiology , Calcitonin Gene-Related Peptide/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiotonic Agents/pharmacology , Heart Failure/metabolism , Heart Failure/pathology , Hypertension/metabolism , Hypertension/pathology , Male , Mice , Mice, Inbred C57BL , Multiple Organ Failure/metabolism , Multiple Organ Failure/pathology , Multiple Organ Failure/prevention & control , Oxidative Stress/drug effects , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...