Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38376487

ABSTRACT

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Subject(s)
Balaenoptera , Neoplasms , Animals , Balaenoptera/genetics , Segmental Duplications, Genomic , Genome , Demography , Neoplasms/genetics
2.
Genomics ; 114(3): 110330, 2022 05.
Article in English | MEDLINE | ID: mdl-35278615

ABSTRACT

Primary hepatocytes are widely used in the pharmaceutical industry to screen drug candidates for hepatotoxicity, but hepatocytes quickly dedifferentiate and lose their mature metabolic function in culture. Attempts have been made to better recapitulate the in vivo liver environment in culture, but the full spectrum of signals required to maintain hepatocyte function ex vivo remains elusive. To elucidate molecular changes that accompany, and may contribute to dedifferentiation of hepatocytes ex vivo, we performed lineage tracing and comprehensive profiling of alterations in their gene expression profiles and chromatin landscape during culture. First, using genetically tagged hepatocytes we demonstrate that expression of the fetal gene alpha-fetoprotein in cultured hepatocytes comes from cells that previously expressed the mature gene albumin, and not from a population of albumin-negative precursor cells, proving mature hepatocytes undergo true dedifferentiation in culture. Next we studied the dedifferentiation process in detail through bulk RNA-sequencing of hepatocytes cultured over an extended period. We identified three distinct phases of dedifferentiation: an early phase, where mature hepatocyte genes are rapidly downregulated in a matter of hours; a middle phase, where fetal genes are activated; and a late phase, where initially rare contaminating non-parenchymal cells proliferate, taking over the culture. Lastly, to better understand the signaling events that result in the rapid downregulation of mature genes in hepatocytes, we examined changes in chromatin accessibility in these cells during the first 24 h of culture using Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). We find that drastic and rapid changes in chromatin accessibility occur immediately upon the start of culture. Using binding motif analysis of the areas of open chromatin sharing similar temporal profiles, we identify several candidate transcription factors potentially involved in the dedifferentiation of primary hepatocytes in culture.


Subject(s)
Hepatocytes , Liver , Cells, Cultured , Hepatocytes/metabolism , Albumins , Chromatin/genetics
3.
Nucleic Acids Res ; 50(2): e12, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34850101

ABSTRACT

Considerable effort has been devoted to refining experimental protocols to reduce levels of technical variability and artifacts in single-cell RNA-sequencing data (scRNA-seq). We here present evidence that equalizing the concentration of cDNA libraries prior to pooling, a step not consistently performed in single-cell experiments, improves gene detection rates, enhances biological signals, and reduces technical artifacts in scRNA-seq data. To evaluate the effect of equalization on various protocols, we developed Scaffold, a simulation framework that models each step of an scRNA-seq experiment. Numerical experiments demonstrate that equalization reduces variation in sequencing depth and gene-specific expression variability. We then performed a set of experiments in vitro with and without the equalization step and found that equalization increases the number of genes that are detected in every cell by 17-31%, improves discovery of biologically relevant genes, and reduces nuisance signals associated with cell cycle. Further support is provided in an analysis of publicly available data.


Subject(s)
Gene Library , RNA-Seq/methods , Single-Cell Analysis/methods , Algorithms , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Humans , RNA-Seq/standards , Sequence Analysis, RNA/methods , Single-Cell Analysis/standards , Software
4.
PLoS Comput Biol ; 17(3): e1008778, 2021 03.
Article in English | MEDLINE | ID: mdl-33647016

ABSTRACT

Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.


Subject(s)
Chimerism , Human Embryonic Stem Cells , Neurogenesis , Pluripotent Stem Cells , Animals , Cells, Cultured , Computational Biology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/physiology , Humans , Mice , Neurogenesis/genetics , Neurogenesis/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Species Specificity , Transcriptome/genetics
5.
PLoS Comput Biol ; 15(12): e1007543, 2019 12.
Article in English | MEDLINE | ID: mdl-31815944

ABSTRACT

Pluripotent stem cells retain the developmental timing of their species of origin in vitro, an observation that suggests the existence of a cell-intrinsic developmental clock, yet the nature and machinery of the clock remain a mystery. We hypothesize that one possible component may lie in species-specific differences in the kinetics of transcriptional responses to differentiation signals. Using a liquid-handling robot, mouse and human pluripotent stem cells were exposed to identical neural differentiation conditions and sampled for RNA-sequencing at high frequency, every 4 or 10 minutes, for the first 10 hours of differentiation to test for differences in transcriptomic response rates. The majority of initial transcriptional responses occurred within a rapid window in the first minutes of differentiation for both human and mouse stem cells. Despite similarly early onsets of gene expression changes, we observed shortened and condensed gene expression patterns in mouse pluripotent stem cells compared to protracted trends in human pluripotent stem cells. Moreover, the speed at which individual genes were upregulated, as measured by the slopes of gene expression changes over time, was significantly faster in mouse compared to human cells. These results suggest that downstream transcriptomic response kinetics to signaling cues are faster in mouse versus human cells, and may offer a partial account for the vast differences in developmental rates across species.


Subject(s)
Cell Differentiation/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA-Seq/statistics & numerical data , Animals , Cell Line , Computational Biology , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Kinetics , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Regenerative Medicine , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...