Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
IUCrJ ; 6(Pt 5): 782-783, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31576209

ABSTRACT

With the technological development of affordable and impactful laboratory-based tools and their ever-growing scientific scope, large-science facilities need to review their strategies in order to continue to add value for their scientific communities.

2.
Nat Mater ; 9(9): 716-20, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20639892

ABSTRACT

The iron chalcogenide Fe(1+y)(Te(1-x)Se(x)) is structurally the simplest of the Fe-based superconductors. Although the Fermi surface is similar to iron pnictides, the parent compound Fe(1+y)Te exhibits antiferromagnetic order with an in-plane magnetic wave vector (pi,0) (ref. 6). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave vector (pi,pi) that connects hole and electron parts of the Fermi surface. Despite these differences, both the pnictide and chalcogenide Fe superconductors exhibit a superconducting spin resonance around (pi,pi) (refs 9, 10, 11). A central question in this burgeoning field is therefore how (pi,pi) superconductivity can emerge from a (pi,0) magnetic instability. Here, we report that the magnetic soft mode evolving from the (pi,0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs as magnetic correlations at (pi,0) are suppressed and the mode at (pi, pi) becomes dominant for x>0.29. Our results suggest a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors.

3.
Phys Rev Lett ; 104(7): 077204, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20366913

ABSTRACT

Charge ordering phenomena in overdoped La1-xCaxMnO3 (LCMO) manganites with x>or=0.5 are generally believed to be associated with the formation of charge stripes composed of alternating Mn3+ and Mn4+ charges. However, a number of recent experiments indicate that instead of stripes the charge in these systems is spatially organized in a uniform charge density wave. At the same time theory predicts that the ground state is modulated by an incommensurate (IC) orbital and charge soliton lattice. Here, by using nuclear magnetic resonance we provide the first direct evidence that the spin ground state in overdoped LCMO manganites is IC modulated with phase solitons. At higher temperatures the solitonic superstructure is replaced by a uniform spin-density wave, subjected to coherent slow fluctuations, showing a striking similarity with slow fluctuations in the striped phase of high T{c} cuprates and nickelates.

4.
Phys Rev Lett ; 105(16): 167207, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21231008

ABSTRACT

Using soft x-ray diffraction at the Dy-M5 resonance, pronounced circular dichroism in the ferroelectric phase of DyMnO3 is observed in connection with sizable b and c components of the Dy-4f magnetic moments. This provides strong evidence for cycloidal order of the 4f moments, corroborating that inversion-symmetry breaking in this material is not accomplished by the Mn spins alone. The 4f circular dichroism allows us to image multiferroic domains that are imprinted on the surface of DyMnO3 using the local charging by the x-ray beam via the photoelectric effect.

5.
Nat Mater ; 8(10): 798-802, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19684586

ABSTRACT

Charge carriers in low-doped semiconductors may distort the atomic lattice around them and through this interaction form so-called small polarons. High carrier concentrations on the other hand can lead to short-range ordered polarons (large polarons) and even to a long-range charge and orbital order. These ordered systems should be insulating with a large electrical resistivity. However, recently a polaronic pseudogap was found in a metallic phase of La(2-2x)Sr(1+2x)Mn(2)O(7) (ref. 7). This layered manganite is famous for colossal magnetoresistance associated with a phase transition from this low-temperature metallic phase to a high-temperature insulating phase. Broad charge-order peaks due to large polarons in the insulating phase disappear when La(2-2x)Sr(1+2x)Mn(2)O(7) becomes metallic. Investigating how polaronic features survive in the metallic phase, here we report the results of inelastic neutron scattering measurements showing that inside the metallic phase polarons remain as fluctuations that strongly broaden and soften certain phonons near the wavevectors where the charge-order peaks appeared in the insulating phase. Our findings imply that polaronic signatures in metals may generally come from a competing insulating charge-ordered phase. Our findings are highly relevant to cuprate superconductors with both a pseudogap and a similar phonon effect associated with a competing stripe order.

6.
Phys Rev Lett ; 102(20): 207205, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19519070

ABSTRACT

Using in-field single-crystal neutron diffraction, we have determined the magnetic structure of TbMnO(3) in the high field P parallel a phase. We unambiguously establish that the ferroelectric polarization arises from a cycloidal Mn spin ordering, with spins rotating in the ab plane. Our results demonstrate directly that the flop of the ferroelectric polarization in TbMnO(3) with applied magnetic field is caused from the flop of the Mn cycloidal plane.

7.
Phys Rev Lett ; 99(17): 177206, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995366

ABSTRACT

We report on diffraction measurements on multiferroic TbMnO(3) which demonstrate that the Tb- and Mn-magnetic orders are coupled below the ferroelectric transition T(FE) = 28 K. For T

8.
Phys Rev Lett ; 98(13): 137206, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17501238

ABSTRACT

The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5 meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5 meV mode is in perfect agreement with recent infrared-spectroscopy data giving strong support to its interpretation as a hybridized phonon-magnon excitation.

9.
Phys Rev Lett ; 98(5): 057206, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17358896

ABSTRACT

Neutron powder diffraction and single crystal x-ray resonant magnetic scattering measurements suggest that Dy plays an active role in enhancing the ferroelectric polarization in multiferroic DyMnO3 above T(Dy)(N)=6.5 K. We observe the evolution of an incommensurate ordering of Dy moments with the same periodicity as the Mn spiral ordering. It closely tracks the evolution of the ferroelectric polarization. Below T(Dy)(N), where Dy spins order commensurately, the polarization decreases to values similar for those of TbMnO3. The higher P(s) found just above T(Dy)(N) arises from the contribution of Dy spins so as to effectively increase the amplitude of the Mn spin spiral.

10.
Phys Rev Lett ; 97(5): 056401, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-17026121

ABSTRACT

Using angle-resolved photoemission, we have observed sharp quasiparticlelike peaks in the prototypical layered manganite La(2-2x)Sr(1+2x)Mn(2)O(7) (x=0.36,0.38). We focus on the (pi,0) regions of k space and study their electronic scattering rates and dispersion kinks, uncovering bilayer-split bands, the critical energy scales, momentum scales, and strengths of the interactions that renormalize the electrons. To identify these bosons, we measured phonon dispersions in the energy range of the kink by inelastic neutron scattering, finding a good match in both energy and momentum to the oxygen bond-stretching phonons.

11.
Phys Rev Lett ; 93(24): 247007, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15697854

ABSTRACT

We have studied the superconducting phase diagram of NaxCoO2.yH(2)O as a function of electronic doping, characterizing our samples both in terms of Na content x and the Co valence state. Our findings are consistent with a recent report that intercalation of H3O+ ions into NaxCoO2, together with water, acts as an additional dopant, indicating that Na substoichiometry alone does not control the electronic doping of these materials. We find a superconducting phase diagram where optimal T(C) is achieved through a Co valence range of 3.24-3.35, while T(C) decreases for materials with a higher Co valence. The critical role of dimensionality in achieving superconductivity is highlighted by similarly doped nonsuperconducting anhydrous samples, differing from the superconducting hydrate only in interlayer spacing.

12.
Nature ; 423(6939): 522-5, 2003 May 29.
Article in English | MEDLINE | ID: mdl-12774117

ABSTRACT

Superconductivity in the high-transition-temperature (high-T(c)) copper oxides competes with other possible ground states. The physical explanation for superconductivity can be constrained by determining the nature of the closest competing ground state, and establishing if that state is universal among the high-T(c) materials. Antiferromagnetism has been theoretically predicted to be the competing ground state. A competing ground state is revealed when superconductivity is destroyed by the application of a magnetic field, and antiferromagnetism has been observed in hole-doped materials under the influence of modest fields. None of the previous experiments have revealed the quantum phase transition from the superconducting state to the antiferromagnetic state, because they failed to reach the upper critical field B(c2). Here we report the results of transport and neutron-scattering experiments on electron-doped Nd1.85Ce0.15CuO4 (refs 13, 14), where B(c2) can be reached. The applied field reveals a static, commensurate, anomalously conducting long-range ordered antiferromagnetic state, in which the induced moment scales approximately linearly with the field strength until it saturates at B(c2). This and previous experiments on the hole-doped materials therefore establishes antiferromagnetic order as a competing ground state in the high-T(c) copper oxide materials, irrespective of electron or hole doping.

13.
Phys Rev Lett ; 89(3): 036401, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12144407

ABSTRACT

Neutron scattering measurements on a bilayer manganite near optimal doping show that the short-range polaron correlations are completely dynamic at high T, but then freeze upon cooling to a temperature T(*) approximately equal 310 K. This glass transition suggests that the paramagnetic/insulating state arises from an inherent orbital frustration that inhibits the formation of a long-range orbital- and charge-ordered state. Upon further cooling into the ferromagnetic-metallic state (T(C) = 114 K), where the polarons melt, the diffuse scattering quickly develops into a propagating, transverse optic phonon.

14.
J Am Chem Soc ; 123(1): 162-72, 2001 Jan 10.
Article in English | MEDLINE | ID: mdl-11273613

ABSTRACT

Using dc magnetization, ac susceptibility, specific heat, and neutron diffraction, we have studied the magnetic properties of Mn[N(CN)2]2(pyz) (pyz = pyrazine) in detail. The material crystallizes in the monoclinic space group P2(1)/n with a = 7.3248(2), b = 16.7369(4), and c = 8.7905 (2) A, beta = 89.596 (2) degrees, V = 1077.65(7) A(3), and Z = 4, as determined by Rietveld refinement of neutron powder diffraction data at 1.35 K. The 5 K neutron powder diffraction data reflect very little variation in the crystal structure. Interpenetrating ReO3-like networks are formed from axially elongated Mn(2+) octahedra and edges made up of mu-bonded [N(CN)2](-) anions and neutral pyz ligands. A three-dimensional antiferromagnetic ordering occurs below T(N) = 2.53(2) K. The magnetic unit cell is double the nuclear one along the a- and c-axes, giving the (1/2, 0, 1/2) superstructure. The crystallographic and antiferromagnetic structures are commensurate and consist of collinear Mn(2+) moments, each with a magnitude of 4.15(6) mu(B) aligned parallel to the a-direction (Mn-pyz-Mn chains). Electronic structure calculations indicate that the exchange interaction is much stronger along the Mn-pyz-Mn chain axis than along the Mn-NCNCN-Mn axes by a factor of approximately 40, giving rise to a predominantly one-dimensional magnetic system. Thus, the variable-temperature magnetic susceptibility data are well described by a Heisenberg antiferromagnetic chain model, giving g = 2.01(1) and J/k(B) = -0.27(1) K. Owing to single-ion anisotropy of the Mn(2+) ion, field-induced phenomena ascribed to spin-flop and paramagnetic transitions are observed at 0.43 and 2.83 T, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...