Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebellum ; 18(3): 309-319, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30460543

ABSTRACT

Bilateral volume reduction in the caudate nucleus has been established as a prominent brain abnormality associated with a FOXP2 mutation in affected members of the 'KE family', who present with developmental orofacial and verbal dyspraxia in conjunction with pervasive language deficits. Despite the gene's early and prominent expression in the cerebellum and the evidence for reciprocal cerebellum-basal ganglia connectivity, very little is known about cerebellar abnormalities in affected KE members. Using cerebellum-specific voxel-based morphometry (VBM) and volumetry, we provide converging evidence from subsets of affected KE members scanned at three time points for grey matter (GM) volume reduction bilaterally in neocerebellar lobule VIIa Crus I compared with unaffected members and unrelated controls. We also show that right Crus I volume correlates with left and total caudate nucleus volumes in affected KE members, and that right and total Crus I volumes predict the performance of affected members in non-word repetition and non-verbal orofacial praxis. Crus I also shows bilateral hypo-activation in functional MRI in the affected KE members relative to controls during non-word repetition. The association of Crus I with key aspects of the behavioural phenotype of this FOXP2 point mutation is consistent with recent evidence of cerebellar involvement in complex motor sequencing. For the first time, specific cerebello-basal ganglia loops are implicated in the execution of complex oromotor sequences needed for human speech.


Subject(s)
Cerebellum/physiopathology , Forkhead Transcription Factors/genetics , Language Disorders/genetics , Language Disorders/physiopathology , Adolescent , Adult , Aged , Child , Female , Humans , Male , Middle Aged , Nervous System Malformations/genetics , Nervous System Malformations/physiopathology , Point Mutation , Young Adult
2.
Cerebellum ; 13(1): 121-38, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23943521

ABSTRACT

The field of neurostimulation of the cerebellum either with transcranial magnetic stimulation (TMS; single pulse or repetitive (rTMS)) or transcranial direct current stimulation (tDCS; anodal or cathodal) is gaining popularity in the scientific community, in particular because these stimulation techniques are non-invasive and provide novel information on cerebellar functions. There is a consensus amongst the panel of experts that both TMS and tDCS can effectively influence cerebellar functions, not only in the motor domain, with effects on visually guided tracking tasks, motor surround inhibition, motor adaptation and learning, but also for the cognitive and affective operations handled by the cerebro-cerebellar circuits. Verbal working memory, semantic associations and predictive language processing are amongst these operations. Both TMS and tDCS modulate the connectivity between the cerebellum and the primary motor cortex, tuning cerebellar excitability. Cerebellar TMS is an effective and valuable method to evaluate the cerebello-thalamo-cortical loop functions and for the study of the pathophysiology of ataxia. In most circumstances, DCS induces a polarity-dependent site-specific modulation of cerebellar activity. Paired associative stimulation of the cerebello-dentato-thalamo-M1 pathway can induce bidirectional long-term spike-timing-dependent plasticity-like changes of corticospinal excitability. However, the panel of experts considers that several important issues still remain unresolved and require further research. In particular, the role of TMS in promoting cerebellar plasticity is not established. Moreover, the exact positioning of electrode stimulation and the duration of the after effects of tDCS remain unclear. Future studies are required to better define how DCS over particular regions of the cerebellum affects individual cerebellar symptoms, given the topographical organization of cerebellar symptoms. The long-term neural consequences of non-invasive cerebellar modulation are also unclear. Although there is an agreement that the clinical applications in cerebellar disorders are likely numerous, it is emphasized that rigorous large-scale clinical trials are missing. Further studies should be encouraged to better clarify the role of using non-invasive neurostimulation techniques over the cerebellum in motor, cognitive and psychiatric rehabilitation strategies.


Subject(s)
Cerebellum/physiopathology , Electric Stimulation Therapy , Transcranial Magnetic Stimulation , Animals , Cerebellar Ataxia/physiopathology , Cerebellar Ataxia/therapy , Electric Stimulation Therapy/methods , Humans , Mental Processes/physiology , Motor Cortex/physiopathology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...