Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(5): 583-589, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38746885

ABSTRACT

To further facilitate the discovery of cysteine reactive covalent inhibitors, there is a need to develop new reactive groups beyond the traditional acrylamide-type warheads. Herein we describe the design and synthesis of covalent EGFR inhibitors that use vinylpyridine as the reactive group. Structure-based design identified the quinazoline-containing vinylpyridine 6 as a starting point. Further modifications focused on reducing reactivity resulted in substituted vinyl compound 12, which shows high EGFR potency and good kinase selectivity, as well as significantly reduced reactivity compared to the starting compound 6, confirming that vinylpyridines can be applied as an alternative cysteine reactive warhead with tunable reactivity.

2.
Int J Parasitol Drugs Drug Resist ; 25: 100537, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38810336

ABSTRACT

Target-based approaches have traditionally been used in the search for new anti-infective molecules. Target selection process, a critical step in Drug Discovery, identifies targets that are essential to establish or maintain the infection, tractable to be susceptible for inhibition, selective towards their human ortholog and amenable for large scale purification and high throughput screening. The work presented herein validates the Plasmodium falciparum mRNA 5' triphosphatase (PfPRT1), the first enzymatic step to cap parasite nuclear mRNAs, as a candidate target for the development of new antimalarial compounds. mRNA capping is essential to maintain the integrity and stability of the messengers, allowing their translation. PfPRT1 has been identified as a member of the tunnel, metal dependent mRNA 5' triphosphatase family which differs structurally and mechanistically from human metal independent mRNA 5' triphosphatase. In the present study the essentiality of PfPRT1 was confirmed and molecular biology tools and methods for target purification, enzymatic assessment and target engagement were developed, with the goal of running a future high throughput screening to discover PfPRT1 inhibitors.

3.
J Med Chem ; 67(7): 5538-5566, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513086

ABSTRACT

Unlocking novel E3 ligases for use in heterobifunctional PROTAC degraders is of high importance to the pharmaceutical industry. Over-reliance on the current suite of ligands used to recruit E3 ligases could limit the potential of their application. To address this, potent ligands for DCAF15 were optimized using cryo-EM supported, structure-based design to improve on micromolar starting points. A potent binder, compound 24, was identified and subsequently conjugated into PROTACs against multiple targets. Following attempts on degrading a number of proteins using DCAF15 recruiting PROTACs, only degradation of BRD4 was observed. Deconvolution of the mechanism of action showed that this degradation was not mediated by DCAF15, thereby highlighting both the challenges faced when trying to expand the toolbox of validated E3 ligase ligands for use in PROTAC degraders and the pitfalls of using BRD4 as a model substrate.


Subject(s)
Nuclear Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Nuclear Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , Ligands
4.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38466661

ABSTRACT

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Subject(s)
Neoplasms , Humans , Entropy , Methionine Adenosyltransferase/metabolism
5.
Biochemistry ; 60(47): 3621-3632, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34780697

ABSTRACT

Methionine adenosyltransferase (MAT) catalyzes the adenosine 5'-triphosphate (ATP) and l-methionine (l-Met) dependent formation of S-adenosyl-l-methionine (SAM), the principal methyl donor of most biological transmethylation reactions. We carried out in-depth kinetic studies to further understand its mechanism and interaction with a potential regulator, Mat2B. The initial velocity pattern and results of product inhibition by SAM, phosphate, and pyrophosphate, and dead-end inhibition by the l-Met analog cycloleucine (l-cLeu) suggest that Mat2A follows a strictly ordered kinetic mechanism where ATP binds before l-Met and with SAM released prior to random release of phosphate and pyrophosphate. Isothermal titration calorimetry (ITC) showed binding of ATP to Mat2A with a Kd of 80 ± 30 µM, which is close to the Km(ATP) of 50 ± 10 µM. In contrast, l-Met or l-cLeu showed no binding to Mat2A in the absence of ATP; however, binding to l-cLeu was observed in the presence of ATP. The ITC results are fully consistent with the product and dead-inhibition results obtained. We also carried out kinetic studies in the presence of the physiological regulator Mat2B. Under conditions where all Mat2A is found in complex with Mat2B, no significant change in the kinetic parameters was observed despite confirmation of a very high binding affinity of Mat2A to Mat2B (Kd of 6 ± 1 nM). Finally, we found that while Mat2A is unstable at low concentrations (<100 nM), rapidly losing activity at 37 °C, it retained full activity for at least 2 h when Mat2B was present at the known 2:1 Mat2A/Mat2B stoichiometry.


Subject(s)
Methionine Adenosyltransferase/metabolism , Adenosine Triphosphate/metabolism , Enzyme Stability , Humans , Kinetics , Methionine/metabolism , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , S-Adenosylmethionine/metabolism
6.
J Med Chem ; 64(10): 6814-6826, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33900758

ABSTRACT

MAT2a is a methionine adenosyltransferase that synthesizes the essential metabolite S-adenosylmethionine (SAM) from methionine and ATP. Tumors bearing the co-deletion of p16 and MTAP genes have been shown to be sensitive to MAT2a inhibition, making it an attractive target for treatment of MTAP-deleted cancers. A fragment-based lead generation campaign identified weak but efficient hits binding in a known allosteric site. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a merging and growing strategy into an arylquinazolinone series of potent MAT2a inhibitors. The selected in vivo tool compound 28 reduced SAM-dependent methylation events in cells and inhibited proliferation of MTAP-null cells in vitro. In vivo studies showed that 28 was able to induce antitumor response in an MTAP knockout HCT116 xenograft model.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Methionine Adenosyltransferase/antagonists & inhibitors , Allosteric Site , Animals , Cell Proliferation , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gene Knockout Techniques , HCT116 Cells , Half-Life , Humans , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Mice , Molecular Dynamics Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , Rats , S-Adenosylmethionine/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
7.
Biochemistry ; 59(14): 1428-1441, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32207968

ABSTRACT

Osimertinib is a covalent, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for treating non-small cell lung cancer patients with activating EGFR mutations (Exon19del or L858R) or with the T790M resistance mutation following disease progression on first- or second-generation EGFR TKIs. The aim of this work is to rationalize and understand how osimertinib achieves mutant EGFR selectivity over the wild-type (WT) by evaluating its kinetic mechanism of action. In doing so, we developed methodologies combining steady-state and pre-steady-state kinetics to determine the covalent inactivation rates (kinact) and reversible binding affinities (Ki) for osimertinib against WT, L858R, and L858R/T790M EGFR and compared these data to the inhibition kinetics of earlier generations of EGFR TKIs. The kinact/KI values indicate osimertinib inactivates L858R and L858R/T790M with 20- and 50-fold higher overall efficiencies, respectively, compared to that for WT. The Ki and kinact values reveal that osimertinib binds 3-fold tighter to and reacts 3-fold faster with L858R than WT EGFR and binds 17-fold tighter to and reacts 3-fold faster with L858R/T790M than with the WT EGFR. We conclude that osimertinib overcomes the T790M mutation through improved affinities from stronger hydrophobic interactions with Met790 versus Thr790 and an improved rate of covalent bond formation via better positioning of the acrylamide warhead, while osimertinib targets the L858R mutation through better affinities and reactivities with the mutant in the context of differential binding affinities of the competing substrate ATP. This work highlights the importance of optimizing both reversible drug-target interactions and inactivation rates for covalent inhibitors to achieve selectivity in targeting mutant EGFRs.


Subject(s)
Acrylamides/chemistry , Aniline Compounds/chemistry , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/enzymology , Lung Neoplasms/enzymology , Protein Kinase Inhibitors/chemistry , Acrylamides/administration & dosage , Aniline Compounds/administration & dosage , Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Kinetics , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/administration & dosage
8.
J Med Chem ; 63(5): 2557-2576, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31922409

ABSTRACT

Decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) is an essential enzyme in Mycobacterium tuberculosis and has recently been studied as a potential drug target, with inhibitors progressing to clinical studies. Here we describe the identification of a novel series of morpholino-pyrimidine DprE1 inhibitors. These were derived from a phenotypic high-throughput screening (HTS) hit with suboptimal physicochemical properties. Optimization strategies included scaffold-hopping, synthesis, and evaluation of fragments of the lead compounds and property-focused optimization. The resulting optimized compounds had much improved physicochemical properties and maintained enzyme and cellular potency. These molecules demonstrated potent efficacy in an in vivo tuberculosis murine infection model.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrimidines/pharmacology , Tuberculosis/drug therapy , Alcohol Oxidoreductases/metabolism , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Bacterial Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Male , Mice , Morpholines/chemistry , Morpholines/pharmacology , Morpholines/therapeutic use , Mycobacterium tuberculosis/enzymology , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Tuberculosis/microbiology
9.
Cell Chem Biol ; 27(1): 41-46.e17, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31786184

ABSTRACT

Deregulation of the PRC2 complex, comprised of the core subunits EZH2, SUZ12, and EED, drives aberrant hypermethylation of H3K27 and tumorigenicity of many cancers. Although inhibitors of EZH2 have shown promising clinical activity, preclinical data suggest that resistance can be acquired through secondary mutations in EZH2 that abrogate drug target engagement. To address these limitations, we have designed several hetero-bifunctional PROTACs (proteolysis-targeting chimera) to efficiently target EED for elimination. Our PROTACs bind to EED (pKD ∼ 9.0) and promote ternary complex formation with the E3 ubiquitin ligase. The PROTACs potently inhibit PRC2 enzyme activity (pIC50 ∼ 8.1) and induce rapid degradation of not only EED but also EZH2 and SUZ12 within the PRC2 complex. Furthermore, the PROTACs selectively inhibit proliferation of PRC2-dependent cancer cells (half maximal growth inhibition [GI50] = 49-58 nM). In summary, our data demonstrate a therapeutic modality to target PRC2-dependent cancer through a PROTAC-mediated degradation mechanism.


Subject(s)
Polycomb Repressive Complex 2/metabolism , Proteolysis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Polycomb Repressive Complex 2/antagonists & inhibitors , Structure-Activity Relationship
10.
J Med Chem ; 61(24): 11221-11249, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30500189

ABSTRACT

Tuberculosis is the leading cause of death worldwide from infectious diseases. With the development of drug-resistant strains of Mycobacterium tuberculosis, there is an acute need for new medicines with novel modes of action. Herein, we report the discovery and profiling of a novel hydantoin-based family of antimycobacterial inhibitors of the decaprenylphospho-ß-d-ribofuranose 2-oxidase (DprE1). In this study, we have prepared a library of more than a 100 compounds and evaluated them for their biological and physicochemical properties. The series is characterized by high enzymatic and whole-cell activity, low cytotoxicity, and a good overall physicochemical profile. In addition, we show that the series acts via reversible inhibition of the DprE1 enzyme. Overall, the novel compound family forms an attractive base for progression to further stages of optimization and may provide a promising drug candidate in the future.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydantoins/chemistry , Actinobacteria/drug effects , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Drug Stability , Enzyme Inhibitors/chemistry , Hep G2 Cells , High-Throughput Screening Assays/methods , Humans , Macrophages/microbiology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Reproducibility of Results , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
11.
Sci Rep ; 8(1): 13473, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194385

ABSTRACT

Nitro-substituted 1,3-benzothiazinones (nitro-BTZs) are mechanism-based covalent inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-ß-D-ribose-2'-oxidase (DprE1) with strong antimycobacterial properties. We prepared a number of oxidized and reduced forms of nitro-BTZs to probe the mechanism of inactivation of the enzyme and to identify opportunities for further chemistry. The kinetics of inactivation of DprE1 was examined using an enzymatic assay that monitored reaction progress up to 100 min, permitting compound ranking according to kinact/Ki values. The side-chain at the 2-position and heteroatom identity at the 1-position of the BTZs were found to be important for inhibitory activity. We obtained crystal structures with several compounds covalently bound. The data suggest that steps upstream from the covalent end-points are likely the key determinants of potency and reactivity. The results of protein mass spectrometry using a 7-chloro-nitro-BTZ suggest that nucleophilic reactions at the 7-position do not operate and support a previously proposed mechanism in which BTZ activation by a reduced flavin intermediate is required. Unexpectedly, a hydroxylamino-BTZ showed time-dependent inhibition and mass spectrometry corroborated that this hydroxylamino-BTZ is a mechanism-based suicide inhibitor of DprE1. With this BTZ derivative, we propose a new covalent mechanism of inhibition of DprE1 that takes advantage of the oxidation cycle of the enzyme.


Subject(s)
Alcohol Oxidoreductases , Antitubercular Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Crystallography, X-Ray , Mass Spectrometry
12.
Biochemistry ; 57(24): 3387-3401, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29684272

ABSTRACT

The biosynthetic pathway of peptidoglycan is essential for Mycobacterium tuberculosis. We report here the acetyltransferase substrate specificity and catalytic mechanism of the bifunctional N-acetyltransferase/uridylyltransferase from M. tuberculosis (GlmU). This enzyme is responsible for the final two steps of the synthesis of UDP- N-acetylglucosamine, which is an essential precursor of peptidoglycan, from glucosamine 1-phosphate, acetyl-coenzyme A, and uridine 5'-triphosphate. GlmU utilizes ternary complex formation to transfer an acetyl from acetyl-coenzyme A to glucosamine 1-phosphate to form N-acetylglucosamine 1-phosphate. Steady-state kinetic studies and equilibrium binding experiments indicate that GlmU follows a steady-state ordered kinetic mechanism, with acetyl-coenzyme A binding first, which triggers a conformational change in GlmU, followed by glucosamine 1-phosphate binding. Coenzyme A is the last product to dissociate. Chemistry is partially rate-limiting as indicated by pH-rate studies and solvent kinetic isotope effects. A novel crystal structure of a mimic of the Michaelis complex, with glucose 1-phosphate and acetyl-coenzyme A, helps us to propose the residues involved in deprotonation of glucosamine 1-phosphate and the loop movement that likely generates the active site required for glucosamine 1-phosphate to bind. Together, these results pave the way for the rational discovery of improved inhibitors against M. tuberculosis GlmU, some of which might become candidates for antibiotic discovery programs.


Subject(s)
Bacterial Proteins/metabolism , Biocatalysis , Multienzyme Complexes/metabolism , Uridine Diphosphate N-Acetylglucosamine/biosynthesis , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Kinetics , Magnesium Chloride/chemistry , Magnesium Chloride/pharmacology , Molecular Structure , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Mycobacterium tuberculosis/enzymology , Substrate Specificity , Uridine Diphosphate N-Acetylglucosamine/chemistry
13.
Neurosci Lett ; 673: 44-50, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29499308

ABSTRACT

Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation and HTT expression in cultures of cerebellar granule neurones derived from HdhQ111/Q7 mice. This data serves to validate this pathway and paves the way for the discovery of small molecule inhibitors of this interaction as potential therapies for HD.


Subject(s)
Huntingtin Protein/metabolism , Neurons/metabolism , Proteins/metabolism , Animals , HEK293 Cells , Humans , Huntingtin Protein/genetics , Mice , Mutation , Primary Cell Culture , Protein Binding , Protein Phosphatase 2/metabolism , Ubiquitin-Protein Ligases
14.
Nat Commun ; 7: 12581, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581223

ABSTRACT

Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis ß-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related ß-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Indazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Sulfonamides/pharmacology , Tuberculosis, Pulmonary/drug therapy , Animals , Drug Resistance, Bacterial/genetics , Female , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide/genetics , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/prevention & control
15.
Proc Natl Acad Sci U S A ; 113(31): E4523-30, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432954

ABSTRACT

The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-ß-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.


Subject(s)
Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Gene Expression Regulation, Bacterial , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Molecular Structure , Mutation , Mycobacterium tuberculosis/genetics , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , S-Adenosylmethionine/metabolism
16.
ACS Infect Dis ; 1(12): 615-26, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-27623058

ABSTRACT

We have targeted the Mycobacterium tuberculosis decaprenylphosphoryl-ß-d-ribose oxidase (Mt-DprE1) for potential chemotherapeutic intervention of tuberculosis. A multicopy suppression strategy that overexpressed Mt-DprE1 in M. bovis BCG was used to profile the publically available GlaxoSmithKline antimycobacterial compound set, and one compound (GSK710) was identified that showed an 8-fold higher minimum inhibitory concentration relative to the control strain. Analogues of GSK710 show a clear relationship between whole cell potency and in vitro activity using an enzymatic assay employing recombinant Mt-DprE1, with binding affinity measured by fluorescence quenching of the flavin cofactor of the enzyme. M. bovis BCG spontaneous resistant mutants to GSK710 and a closely related analogue were isolated and sequencing of ten such mutants revealed a single point mutation at two sites, E221Q or G248S within DprE1, providing further evidence that DprE1 is the main target of these compounds. Finally, time-lapse microscopy experiments showed that exposure of M. tuberculosis to a compound of this series arrests bacterial growth rapidly followed by a slower cytolysis phase.

17.
J Biol Chem ; 289(48): 33456-68, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25301950

ABSTRACT

HCV infection is an urgent global health problem that has triggered a drive to discover therapies that specifically target the virus. BMS-791325 is a novel direct antiviral agent specifically targeting HCV NS5B, an RNA-dependent RNA polymerase. Robust viral clearance of HCV was observed in infected patients treated with BMS-791325 in combination with other anti-HCV agents in Phase 2 clinical studies. Biochemical and biophysical studies revealed that BMS-791325 is a time-dependent, non-competitive inhibitor of the polymerase. Binding studies with NS5B genetic variants (WT, L30S, and P495L) exposed a two-step, slow binding mechanism, but details of the binding mechanism differed for each of the polymerase variants. For the clinically relevant resistance variant (P495L), the rate of initial complex formation and dissociation is similar to WT, but the kinetics of the second step is significantly faster, showing that this variant impacts the final tight complex. The resulting shortened residence time translates into the observed decrease in inhibitor potency. The L30S variant has a significantly different profile. The rate of initial complex formation and dissociation is 7-10 times faster for the L30S variant compared with WT; however, the forward and reverse rates to form the final complex are not significantly different. The impact of the L30S variant on the inhibition profile and binding kinetics of BMS-791325 provides experimental evidence for the dynamic interaction of fingers and thumb domains in an environment that supports the formation of active replication complexes and the initiation of RNA synthesis.


Subject(s)
Antiviral Agents/chemistry , Benzazepines/chemistry , Hepacivirus/enzymology , Indoles/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Substitution , Antiviral Agents/pharmacology , Benzazepines/therapeutic use , Hepatitis C/drug therapy , Hepatitis C/enzymology , Humans , Indoles/therapeutic use , Mutation, Missense , Protein Binding , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
18.
J Biomol Screen ; 19(4): 508-15, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24381207

ABSTRACT

Kynurenine 3-monooxygenase (KMO) is a therapeutically important target on the eukaryotic tryptophan catabolic pathway, where it converts L-kynurenine (Kyn) to 3-hydroxykynurenine (3-HK). We have cloned and expressed the human form of this membrane protein as a full-length GST-fusion in a recombinant baculovirus expression system. An enriched membrane preparation was used for a directed screen of approximately 78,000 compounds using a RapidFire mass spectrometry (RF-MS) assay. The RapidFire platform provides an automated solid-phase extraction system that gives a throughput of approximately 7 s per well to the mass spectrometer, where direct measurement of both the substrate and product allowed substrate conversion to be determined. The RF-MS methodology is insensitive to assay interference, other than where compounds have the same nominal mass as Kyn or 3-HK and produce the same mass transition on fragmentation. These instances could be identified by comparison with the product-only data. The screen ran with excellent performance (average Z' value 0.8) and provided several tractable hit series for further investigation.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Mass Spectrometry , Animals , Catalytic Domain , Cell Line , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Kinetics , Kynurenine 3-Monooxygenase/chemistry , Kynurenine 3-Monooxygenase/metabolism , Mass Spectrometry/methods , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
19.
J Biomol Screen ; 19(2): 278-86, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23896685

ABSTRACT

Using mass spectrometry to detect enzymatic activity offers several advantages over fluorescence-based methods. Automation of sample handling and analysis using platforms such as the RapidFire (Agilent Technologies, Lexington, MA) has made these assays amenable to medium-throughput screening (of the order of 100,000 wells). However, true high-throughput screens (HTS) of large compound collections (>1 million) are still considered too time-consuming to be feasible. Here we propose a simple multiplexing strategy that can be used to increase the throughput of RapidFire, making it viable for HTS. The method relies on the ability to analyze pooled samples from several reactions simultaneously and to deconvolute their origin using "mass-tagged" substrates. Using the JmjD2d H3K9me3 demethylase as a model system, we demonstrate the practicality of this method to achieve a 4-fold increase in throughput. This was achieved without any loss of assay quality. This multiplex strategy could easily be scaled to give even greater reductions in analysis time.


Subject(s)
High-Throughput Screening Assays , Jumonji Domain-Containing Histone Demethylases/metabolism , Mass Spectrometry/methods , Epigenomics , Humans , Substrate Specificity
20.
J Biomol Screen ; 17(1): 39-48, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21859681

ABSTRACT

A high-throughput RapidFire mass spectrometry assay is described for the JMJD2 family of Fe(2+), O(2), and α-ketoglutarate-dependent histone lysine demethylases. The assay employs a short amino acid peptide substrate, corresponding to the first 15 amino acid residues of histone H3, but mutated at two positions to increase assay sensitivity. The assay monitors the direct formation of the dimethylated-Lys9 product from the trimethylated-Lys9 peptide substrate. Monitoring the formation of the monomethylated and des-methylated peptide products is also possible. The assay was validated using known inhibitors of the histone lysine demethylases, including 2,4-pyridinedicarboxylic acid and an α-ketoglutarate analogue. With a sampling rate of 7 s per well, the RapidFire technology permitted the single-concentration screening of 101 226 compounds against JMJD2C in 10 days using two instruments, typically giving Z' values of 0.75 to 0.85. Several compounds were identified of the 8-hydroxyquinoline chemotype, a known series of inhibitors of the Lys9-specific histone demethylases. The peptide also functions as a substrate for JMJD2A, JMJD2D, and JMJD2E, thus enabling the development of assays for all 3 enzymes to monitor progress in compound selectivity. The assay represents the first report of a RapidFire mass spectrometry assay for an epigenetics target.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Mass Spectrometry/methods , Dose-Response Relationship, Drug , Enzyme Inhibitors/metabolism , Epigenesis, Genetic/drug effects , Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Kinetics , Lysine/metabolism , Oxyquinoline/metabolism , Oxyquinoline/pharmacology , Peptides/metabolism , Pyridines/metabolism , Pyridines/pharmacology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...