Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 559
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200269, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941572

ABSTRACT

BACKGROUND AND OBJECTIVES: Retinal optical coherence tomography (OCT) provides promising prognostic imaging biomarkers for future disease activity in multiple sclerosis (MS). However, raw OCT-derived measures have multiple dependencies, supporting the need for establishing reference values adjusted for possible confounders. The purpose of this study was to investigate the capacity for age-adjusted z scores of OCT-derived measures to prognosticate future disease activity and disability worsening in people with MS (PwMS). METHODS: We established age-adjusted OCT reference data using generalized additive models for location, scale, and shape for peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layer (GCIP) thicknesses, involving 910 and 423 healthy eyes, respectively. Next, we transformed the retinal layer thickness of PwMS from 3 published studies into age-adjusted z scores (pRNFL-z and GCIP-z) based on the reference data. Finally, we investigated the association of pRNFL-z or GCIP-z as predictors with future confirmed disability worsening (Expanded Disability Status Scale score increase) or disease activity (failing of the no evidence of disease activity [NEDA-3] criteria) as outcomes. Cox proportional hazards models or logistic regression analyses were applied according to the original studies. Optimal cutoffs were identified using the Akaike information criterion as well as location with the log-rank and likelihood-ratio tests. RESULTS: In the first cohort (n = 863), 172 PwMS (24%) had disability worsening over a median observational period of 2.0 (interquartile range [IQR]:1.0-3.0) years. Low pRNFL-z (≤-2.04) were associated with an increased risk of disability worsening (adjusted hazard ratio (aHR) [95% CI] = 2.08 [1.47-2.95], p = 3.82e-5). In the second cohort (n = 170), logistic regression analyses revealed that lower pRNFL-z showed a higher likelihood for disability accumulation at the two-year follow-up (reciprocal odds ratio [95% CI] = 1.51[1.06-2.15], p = 0.03). In the third cohort (n = 78), 46 PwMS (59%) did not maintain the NEDA-3 status over a median follow-up of 2.0 (IQR: 1.9-2.1) years. PwMS with low GCIP-z (≤-1.03) had a higher risk of showing disease activity (aHR [95% CI] = 2.14 [1.03-4.43], p = 0.04). Compared with raw values with arbitrary cutoffs, applying the z score approach with optimal cutoffs showed better performance in discrimination and calibration (higher Harrell's concordance index and lower integrated Brier score). DISCUSSION: In conclusion, our work demonstrated reference cohort-based z scores that account for age, a major driver for disease progression in MS, to be a promising approach for creating OCT-derived measures useable across devices and toward individualized prognostication.


Subject(s)
Disease Progression , Multiple Sclerosis , Tomography, Optical Coherence , Humans , Female , Male , Adult , Middle Aged , Prognosis , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Severity of Illness Index
2.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924428

ABSTRACT

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Subject(s)
Autoantibodies , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Vitamin B 12 Deficiency/immunology , Vitamin B 12/blood , Autoantibodies/blood , Autoantibodies/immunology , Female , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Middle Aged , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Blood-Brain Barrier/metabolism , Male
3.
Pediatr Res ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942888

ABSTRACT

BACKGROUND: Preterm white matter injury (PWMI) is the most common cause of brain injury in premature neonates. PWMI involves a differentiation arrest of oligodendrocytes, the myelinating cells of the central nervous system. Clemastine was previously shown to induce oligodendrocyte differentiation and myelination in mouse models of PWMI at a dose of 10 mg/kg/day. The minimum effective dose (MED) of clemastine is unknown. Identification of the MED is essential for maximizing safety and efficacy in neonatal clinical trials. We hypothesized that the MED in neonatal mice is lower than 10 mg/kg/day. METHODS: Mouse pups were exposed to normoxia or hypoxia (10% FiO2) from postnatal day 3 (P3) through P10. Vehicle or clemastine at one of four doses (0.5, 2, 7.5 or 10 mg/kg/day) was given to hypoxia-exposed pups. Myelination was assessed at age P14 and 10 weeks to determine the MED. Clemastine pharmacokinetics were evaluated at steady-state on day 8 of treatment. RESULTS: Clemastine rescued hypoxia-induced hypomyelination with a MED of 7.5 mg/kg/day. Pharmacokinetic analysis of the MED revealed Cmax 44.0 ng/mL, t1/2 4.6 h, and AUC24 280.1 ng*hr/mL. CONCLUSIONS: Based on these results, myelination-promoting exposures should be achievable with oral doses of clemastine in neonates with PWMI. IMPACT: Preterm white matter injury (PWMI) is the most common cause of brain injury and cerebral palsy in premature neonates. Clemastine, an FDA-approved antihistamine, was recently identified to strongly promote myelination in a mouse model of PWMI and is a possible treatment. The minimum effective dose in neonatal rodents is unknown and is critical for guiding dose selection and balancing efficacy with toxicity in future clinical trials. We identified the minimum effective dose of clemastine and the associated pharmacokinetics in a murine chronic hypoxia model of PWMI, paving the way for a future clinical trial in human neonates.

4.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854134

ABSTRACT

Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.

5.
JAMA Oncol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842838

ABSTRACT

Importance: Immune checkpoint inhibitors improve survival in recurrent and/or metastatic head and neck cancer, yet their role in curative human papillomavirus-positive oropharyngeal cancer (HPV+ OPC) remains undefined. Neoadjuvant nivolumab and chemotherapy followed by response-adaptive treatment in HPV+ OPC may increase efficacy while reducing toxicity. Objective: To determine the deep response rate and tolerability of the addition of neoadjuvant nivolumab to chemotherapy followed by response-adapted locoregional therapy (LRT) in patients with HPV+ OPC. Design, Setting, and Participants: This phase 2 nonrandomized clinical trial conducted at a single academic center enrolled 77 patients with locoregionally advanced HPV+ OPC from 2017 to 2020. Data analyses were performed from February 10, 2021, to January 9, 2023. Interventions: Addition of nivolumab to neoadjuvant nab-paclitaxel and carboplatin (studied in the first OPTIMA trial) followed by response-adapted LRT in patients with HPV+ OPC stages III to IV. Main Outcomes and Measures: Primary outcome was deep response rate to neoadjuvant nivolumab plus chemotherapy, defined as the proportion of tumors with 50% or greater shrinkage per the Response Evaluation Criteria in Solid Tumors 1.1. Secondary outcomes were progression-free survival (PFS) and overall survival (OS). Swallowing function, quality of life, and tissue- and blood-based biomarkers, including programmed death-ligand 1 (PD-L1) expression and circulating tumor HPV-DNA (ctHPV-DNA), were also evaluated. Results: The 73 eligible patients (median [range] age, 61 [37-82] years; 6 [8.2%] female; 67 [91.8%] male) started neoadjuvant nivolumab and chemotherapy. Deep responses were observed in 51 patients (70.8%; 95% CI, 0.59-0.81). Subsequent risk- and response-adaptive therapy was assigned as follows: group A, single-modality radiotherapy alone or transoral robotic surgery (28 patients); group B, intermediate-dose chemoradiotherapy of 45 to 50 Gray (34 patients); and group C, regular-dose chemoradiotherapy of 70 to 75 Gray (10 patients). Two-year PFS and OS were 90.0% (95% CI, 0.80-0.95) and 91.4% (95% CI, 0.82-0.96), respectively. By response-adapted group, 2-year PFS and OS for group A were 96.4% and 96.4%, and group B, 88.0% and 91.0%, respectively. Lower enteral feeding rates and changes in weight, as well as improved swallowing, were observed among patients who received response-adapted LRT. Pathologic complete response rate among patients who underwent transoral robotic surgery was 67.0%. PD-L1 expression was nonsignificantly higher for deeper responses and improved PFS, and ctHPV-DNA clearance was significantly associated with improved PFS. Conclusions and Relevance: This phase 2 nonrandomized clinical trial found that neoadjuvant nivolumab and chemotherapy followed by response-adapted LRT is feasible and has favorable tolerability, excellent OS, and improved functional outcomes in HPV+ OPC, including among patients with high-risk disease. Moreover, addition of nivolumab may benefit high PD-L1 expressors, and sensitive dynamic biomarkers (eg, ctHPV-DNA) are useful for patient selection. Trial Registration: ClinicalTrials.gov Identifier: NCT03107182.

6.
Am Soc Clin Oncol Educ Book ; 44(3): e433330, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718318

ABSTRACT

The treatment for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) with immune checkpoint inhibitors (anti-PD1) with or without chemotherapy has led to an improvement in survival. Yet, despite this therapeutic advancement, only 15%-19% of patients remain alive at four years, highlighting the poor survival and unmet need for improved therapies for this patient population. Some of the key evolving novel therapeutics beyond anti-PD1 in R/M HNSCC have included therapeutic vaccine therapies, bispecific antibodies/fusion proteins and multitargeted kinase inhibitors, and antibody-drug conjugates (ADCs). Multiple concurrent investigations of novel therapeutics for patients with R/M HNSCC beyond anti-PD(L)1 inhibition are currently underway with some promising early results. Beyond immune checkpoint inhibition, novel immunotherapeutic strategies including therapeutic vaccines ranging from targeting human papillomavirus-specific epitopes to personalized neoantigen vaccines are ongoing with some early efficacy signals and large, randomized trials. Other novel weapons including bispecific antibodies, fusion proteins, and multitargeted kinase inhibitors leverage multiple concurrent targets and modulation of the tumor microenvironment to harness antitumor immunity and inhibition of protumorigenic signaling pathways with emerging promising results. Finally, as with other solid tumors, ADCs remain a promising therapeutic intervention either alone or in combination with immunotherapy for patients with R/M HNSCC. With early enthusiasm across novel therapies in R/M HNSCC, results of larger randomized trials in R/M HNSCC are eagerly awaited.


Subject(s)
Immunotherapy , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Immunotherapy/methods , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/drug therapy , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasm Recurrence, Local , Cancer Vaccines/therapeutic use
7.
Lancet Neurol ; 23(6): 588-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760098

ABSTRACT

BACKGROUND: Inebilizumab, an anti-CD19 B-cell-depleting antibody, demonstrated safety and efficacy in neuromyelitis optica spectrum disorder in the randomised controlled period of the N-MOmentum trial. Here, end-of-study data, including the randomised controlled period and open-label extension period, are reported. METHODS: In the double-blind, randomised, placebo-controlled, phase 2/3 N-MOmentum trial, adults aged 18 years and older with an neuromyelitis optica spectrum disorder diagnosis, Expanded Disability Status Scale score of 8·0 or less, and history of either at least one acute inflammatory attack requiring rescue therapy in the past year or two attacks requiring rescue therapy in the past 2 years, were recruited from 81 outpatient specialty clinics or hospitals in 24 countries. Eligible participants were randomly assigned (3:1), using a central interactive voice system or interactive web response system, and a permuted block randomisation scheme (block size of 4), to receive intravenous inebilizumab (300 mg) or identical placebo on days 1 and 15 of the randomised period, which lasted up to 197 days. Participants and all study staff were masked to treatment assignment. The primary endpoint of the randomised period of the trial was time to onset of adjudicated neuromyelitis optica spectrum disorder attack on or before day 197. Participants in the randomised controlled period who had an adjudicated attack, completed 197 days in the study, or were in the randomised controlled period when enrolment stopped, could voluntarily enter the open-label period. In the open-label period, participants either initiated inebilizumab if assigned placebo (receiving 300 mg on days 1 and 15 of the open-label period) or continued treatment if assigned inebilizumab (receiving 300 mg on day 1 and placebo on day 15, to maintain B-cell depletion and masking of the randomised controlled period). All participants subsequently received inebilizumab 300 mg every 6 months for a minimum of 2 years. The end-of-study analysis endpoints were time to adjudicated attack and annualised attack rate (assessed in all participants who received inebilizumab at any point during the randomised controlled period or open-label period [any inebilizumab population] and the aquaporin-4 [AQP4]-IgG seropositive subgroup [any inebilizumab-AQP4-IgG seropositive population]) and safety outcomes (in all participants who were exposed to inebilizumab, analysed as-treated). This study is registered with ClinicalTrials.gov, NCT02200770, and is now complete. FINDINGS: Between Jan 6, 2015, and Sept 24, 2018, 467 individuals were screened, 231 were randomly assigned, and 230 received at least one dose of inebilizumab (n=174) or placebo (n=56). Between May 19, 2015, and Nov 8, 2018, 165 (95%) of 174 participants in the inebilizumab group and 51 (91%) of 56 in the placebo group entered the open-label period (mean age 42·9 years [SD 12·4], 197 [91%] of 216 were female, 19 [9%] were male, 115 [53%] were White, 45 [21%] were Asian, 19 [9%] were American Indian or Alaskan Native, and 19 [9%] were Black or African American). As of data cutoff for this end of study analysis (Dec 18, 2020; median exposure 1178 days [IQR 856-1538], total exposure of 730 person-years) 225 participants formed the any inebilizumab population, and 208 (92%) participants were AQP4-IgG seropositive. Overall, 63 adjudicated neuromyelitis optica spectrum disorder attacks occurred in 47 (21%) of 225 treated participants (60 attacks occurred in 44 [21%] of 208 in the AQP4-IgG seropositive subgroup); 40 (63%) of 63 attacks occurred in 34 (15%) of 225 treated participants during the first year of treatment. Of individuals who had an adjudicated attack while receiving inebilizumab, 36 (77%) of 47 were subsequently attack-free at the end of 4 years. Annualised attack rates decreased year-on-year, with end-of-study adjusted annualised attack rates being similar in the any inebilizumab-AQP4-IgG seropositive subgroup (0·097 [95% CI 0·070-0·14]) and any inebilizumab populations (0·092 [0·067-0·13]). Overall, 208 (92%) of 225 participants who received any inebilizumab had at least one treatment-emergent adverse event, the most frequent of which were urinary tract infection (59 [26%]), nasopharyngitis (47 [21%]), and arthralgia (39 [17%]). Infection rates did not increase over 4 years. Three (1%) of 225 participants in the any inebilizumab population died during the open-label period (one each due to a CNS event of unknown cause and pneumonia, respiratory insufficiency resulting from an neuromyelitis optica spectrum disorder attack and viral pneumonia related to COVID-19), all of which were deemed to be unrelated to treatment. INTERPRETATION: Data from the end-of-study analysis of the N-MOmentum trial showed continued and sustained clinical benefits of long-term inebilizumab treatment in individuals with neuromyelitis optica spectrum disorder, which supports the role of inebilizumab as a CD19+ B-cell-depleting therapy in neuromyelitis optica spectrum disorder. FUNDING: MedImmune and Viela Bio/Horizon Therapeutics, now part of Amgen.


Subject(s)
Antibodies, Monoclonal, Humanized , Neuromyelitis Optica , Humans , Neuromyelitis Optica/drug therapy , Female , Adult , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Middle Aged , Treatment Outcome , Aged , Young Adult
8.
NPJ Precis Oncol ; 8(1): 114, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783041

ABSTRACT

The proto-oncogene MYC encodes a nuclear transcription factor that has an important role in a variety of cellular processes, such as cell cycle progression, proliferation, metabolism, adhesion, apoptosis, and therapeutic resistance. MYC amplification is consistently observed in aggressive forms of several solid malignancies and correlates with poor prognosis and distant metastases. While the tumorigenic effects of MYC in patients with head and neck squamous cell carcinoma (HNSCC) are well known, the molecular mechanisms by which the amplification of this gene may confer treatment resistance, especially to immune checkpoint inhibitors, remains under-investigated. Here we present a unique case of a patient with recurrent/metastatic (R/M) HNSCC who, despite initial response to nivolumab-based treatment, developed rapidly progressive metastatic disease after the acquisition of MYC amplification. We conducted comparative transcriptomic analysis of this patient's tumor at baseline and upon progression to interrogate potential molecular processes through which MYC may confer resistance to immunotherapy and/or chemoradiation and used TCGA-HNSC dataset and an institutional cohort to further explore clinicopathologic features and key molecular networks associated with MYC amplification in HNSCC. This study highlights MYC amplification as a potential mechanism of immune checkpoint inhibitor resistance and suggest its use as a predictive biomarker and potential therapeutic target in R/M HNSCC.

10.
Cell Rep Med ; 5(4): 101490, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574736

ABSTRACT

While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.


Subject(s)
Multiple Sclerosis , Animals , Humans , Multiple Sclerosis/pathology , Retina/pathology , Neurons/pathology , Models, Animal , Atrophy/pathology
11.
Article in English | MEDLINE | ID: mdl-38594794

ABSTRACT

Abstract: Dengue virus (DENV) infection causes 390 million infections per year and 40,000 deaths globally. It is endemic in many countries in Asia, Africa, the Americas, the Caribbean, and Oceania. Dengue is endemic in Timor-Leste year-round, but peak transmission occurs during the rainy season. We briefly describe the epidemiology of DENV in the Municipality of Dili between 2018 and 2022. There were 6,234 cases notified, with a mean annual incidence rate of 330 cases per 100,000 population. There were 55 deaths (case fatality rate 0.9%). The peak annual incidence (3,904 cases) occurred in 2022 after an outbreak was declared in January of that year; this outbreak included 760 cases of dengue haemorrhagic fever and 35 deaths. The number of outbreak cases requiring hospital treatment exceeded the usual capacity, but facilities established for coronavirus disease 2019 (COVID-19) isolation and treatment were repurposed to meet this demand. Existing strategies of vector control, minimising breeding sites and promoting early presentation for treatment should continue, as should the utilisation of surveillance systems and treatment facilities established during the COVID-19 pandemic. However, dengue incidence remains high, and other dengue control strategies-including the deployment of Wolbachia-infected mosquitoes-should be considered in Timor-Leste.


Subject(s)
Dengue Virus , Dengue , Animals , Humans , Timor-Leste/epidemiology , Pandemics , Australia/epidemiology , Dengue/epidemiology
12.
Article in English | MEDLINE | ID: mdl-38594795

ABSTRACT

Abstract: Timor-Leste is a mountainous, half-island nation with a population of 1.3 million, which shares a land border with Indonesia and is 550 km from Darwin, Australia. Since independence in 2002, Timor-Leste has achieved significant development; however, high levels of poverty remain. Chikungunya virus (CHIKV) is endemic in over 100 countries in Africa, Asia, Europe and in the Americas. It is transmitted by the bite of infected Aedes aegypti or Ae. albopictus mosquitoes, which are present in Timor-Leste and which contribute to annual rainy-season dengue virus (DENV) outbreaks. Symptomatic people typically suffer from acute onset of fever, usually accompanied by severe arthritis or arthralgia. Joint pain can be debilitating for several days, and may sometimes last for weeks, months or years. Unlike DENV infection which has significant mortality, most people recover completely. Between 2002 and 2023, there were 26 cases of CHIKV notified in Australia who acquired their infection in Timor-Leste; however, laboratory testing capability for CHIKV in Timor-Leste only became available in 2021 using polymerase chain reaction (PCR). The first locally diagnosed case was notified in November 2023. In January 2024, an outbreak of CHIKV was recognised in Timor-Leste for the first time, with 195 outbreak cases reported during 1-31 January 2024; all were PCR positive. There were no cases hospitalised, and no deaths. The median age of cases was 17 years (range 1-76 years); 51% were males. Cases were reported across the country; most (88/195) were from Dili, although the highest incidence was seen in the neighbouring municipality of Ermera (monthly incidence rate of 58.8 cases per 100,000 population). This first reported outbreak of CHIKV in Timor-Leste highlights the need for improved mosquito-borne illness control and response strategies, including minimising breeding sites and promoting early presentation for treatment and differential diagnosis from DENV, and consideration of the deployment of Wolbachia-infected mosquitoes, particularly as they have shown to reduce the transmission of CHIKV, DENV and Zika virus, all of which pose threats in Timor-Leste.


Subject(s)
Chikungunya Fever , Chikungunya virus , Zika Virus Infection , Zika Virus , Male , Animals , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Female , Chikungunya Fever/epidemiology , Timor-Leste/epidemiology , Australia/epidemiology , Chikungunya virus/genetics , Disease Outbreaks , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control
13.
J Neuroophthalmol ; 44(2): 143-156, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38654413

ABSTRACT

INTRODUCTION: Amelioration of disability in multiple sclerosis requires the development of complementary therapies that target neurodegeneration and promote repair. Remyelination is a promising neuroprotective strategy that may protect axons from damage and subsequent neurodegeneration. METHODS: A review of key literature plus additional targeted search of PubMed and Google Scholar was conducted. RESULTS: There has been a rapid expansion of clinical trials studying putative remyelinating candidates, but further growth of the field is limited by the lack of consensus on key aspects of trial design. We have not yet defined the ideal study population, duration of therapy, or the appropriate outcome measures to detect remyelination in humans. The varied natural history of multiple sclerosis, coupled with the short time frame of phase II clinical trials, requires that we develop and validate biomarkers of remyelination that can serve as surrogate endpoints in clinical trials. CONCLUSIONS: We propose that the visual system may be the most well-suited and validated model for the study potential remyelinating agents. In this review, we discuss the pathophysiology of demyelination and summarize the current clinical trial landscape of remyelinating agents. We present some of the challenges in the study of remyelinating agents and discuss current potential biomarkers of remyelination and repair, emphasizing both established and emerging visual outcome measures.


Subject(s)
Multiple Sclerosis , Remyelination , Humans , Multiple Sclerosis/physiopathology , Multiple Sclerosis/drug therapy , Remyelination/physiology , Remyelination/drug effects , Myelin Sheath
14.
Nat Med ; 30(5): 1300-1308, 2024 May.
Article in English | MEDLINE | ID: mdl-38641750

ABSTRACT

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.


Subject(s)
Autoantibodies , Multiple Sclerosis , Neurofilament Proteins , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , Autoantibodies/blood , Autoantibodies/immunology , Neurofilament Proteins/blood , Neurofilament Proteins/immunology , Biomarkers/blood , Cohort Studies , Female , Male , Adult , Middle Aged
15.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464078

ABSTRACT

Background: Preterm white matter injury (PWMI) is the most common cause of brain injury in premature neonates. PWMI involves a differentiation arrest of oligodendrocytes, the myelinating cells of the central nervous system. Clemastine was previously shown to induce oligodendrocyte differentiation and myelination in mouse models of PWMI at a dose of 10 mg/kg/day. The minimum effective dose (MED) of clemastine is unknown. Identification if the MED is essential for maximizing safety and efficacy in neonatal clinical trials. We hypothesized that the MED in neonatal mice is lower than 10 mg/kg/day. Methods: Mouse pups were exposed to normoxia or hypoxia (10% FiO 2 ) from postnatal day 3 (P3) through P10. Vehicle or clemastine fumarate at one of four doses (0.5, 2, 7.5 or 10 mg/kg/day) was given orally to hypoxia-exposed pups. At P14, myelination was assessed by immunohistochemistry and electron microscopy to determine the MED. Clemastine pharmacokinetics were evaluated at steady-state on day 8 of treatment. Results: Clemastine rescued hypoxia-induced hypomyelination with a MED of 7.5 mg/kg/day. Pharmacokinetic analysis of the MED revealed C max 44.0 ng/mL, t 1/2 4.6 hours, and AUC 24 280.1 ng*hr/mL. Conclusion: Based on these results, myelination-promoting exposures should be achievable with oral doses of clemastine in neonates with PWMI. Key Points: Preterm white matter injury (PWMI) is the most common cause of brain injury and cerebral palsy in premature neonates.Clemastine, an FDA-approved antihistamine, was recently identified to strongly promote myelination in a mouse model of PWMI and is a possible treatment.The minimum effective dose in neonatal rodents is unknown and is critical for guiding dose selection and balancing efficacy with toxicity in future clinical trials.We identified the minimum effective dose of clemastine and the associated pharmacokinetics in a murine chronic hypoxia model of PWMI, paving the way for a future clinical trial in human neonates.

16.
J Cardiovasc Comput Tomogr ; 18(1): 50-55, 2024.
Article in English | MEDLINE | ID: mdl-38314547

ABSTRACT

BACKGROUND: Computed tomography aortic valve calcium (AVC) score has accepted value for diagnosing and predicting outcomes in aortic stenosis (AS). Multi-energy CT (MECT) allows virtual non-contrast (VNC) reconstructions from contrast scans. We aim to compare the VNC-AVC score to the true non-contrast (TNC)-AVC score for assessing AS severity. METHODS: We prospectively included patients undergoing a MECT for transcatheter aortic valve replacement (TAVR) planning. TNC-AVC was acquired before contrast, and VNC-AVC was derived from a retrospectively gated contrast-enhanced scan. The Agatston scoring method was used for quantification, and linear regression analysis to derive adjusted-VNC values. RESULTS: Among 109 patients (55% female) included, 43% had concordant severe and 14% concordant moderate AS. TNC scan median dose-length product was 116 â€‹mGy∗cm. The median TNC-AVC was 2,107 AU (1,093-3,372), while VNC-AVC was 1,835 AU (1293-2,972) after applying the coefficient (1.46) and constant (743) terms. A strong correlation was demonstrated between methods (r â€‹= â€‹0.93; p â€‹< â€‹0.001). Using accepted thresholds (>1,300 AU for women and >2,000 AU for men), 65% (n â€‹= â€‹71) of patients had severe AS by TNC-AVC and 67% (n â€‹= â€‹73) by adjusted-VNC-AVC. After estimating thresholds for adjusted-VNC (>1,564 AU for women and >2,375 AU for men), 56% (n â€‹= â€‹61) had severe AS, demonstrating substantial agreement with TNC-AVC (κ â€‹= â€‹0.77). CONCLUSIONS: MECT-derived VNC-AVC showed a strong correlation with TNC-AVC. After adjustment, VNC-AVC demonstrated substantial agreement with TNC-AVC, potentially eliminating the requirement for an additional scan and enabling reductions in both radiation exposure and acquisition time.


Subject(s)
Aortic Valve Stenosis , Tomography, X-Ray Computed , Male , Humans , Female , Retrospective Studies , Predictive Value of Tests , Tomography, X-Ray Computed/methods , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Constriction, Pathologic , Calcium
18.
Cancers (Basel) ; 16(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38201639

ABSTRACT

Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths in the world. Patients with early-stage HCC are treated with liver-directed therapies to bridge or downstage for liver transplantation (LT). In this study, the impact of HCC care delay on HCC progression among early-stage patients was investigated. Early-stage HCC patients undergoing their first cycle of liver-directed therapy (LDT) for bridge/downstaging to LT between 04/2016 and 04/2022 were retrospectively analyzed. Baseline variables were analyzed for risk of disease progression and time to progression (TTP). HCC care delay was determined by the number of rescheduled appointments related to HCC care. The study cohort consisted of 316 patients who received first-cycle LDT. The HCC care no-show rate was associated with TTP (p = 0.004), while the overall no-show rate was not (p = 0.242). The HCC care no-show rate and HCC care delay were further expanded as no-show rates and rescheduled appointments for imaging, laboratory, and office visits, respectively. More than 60% of patients experienced HCC care delay for imaging and laboratory appointments compared to just 8% for office visits. Multivariate analysis revealed that HCC-specific no-show rates and HCC care delay for imaging (p < 0.001) were both independently associated with TTP, highlighting the importance of minimizing delays in early-stage HCC imaging surveillance to reduce disease progression risk.

19.
Oral Oncol ; 149: 106688, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219706

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent malignancy worldwide, with a significant proportion of patients developing recurrent and/or metastatic (R/M) disease. Despite recent advances in therapy, the prognosis for patients with advanced HNSCC remains poor. Here, we present the case of a patient with recurrent metastatic HNSCC harboring an HRAS G12S mutation who achieved a durable response to treatment with tipifarnib, a selective inhibitor of farnesyltransferase. The patient was a 48-year-old woman who had previously received multiple lines of therapy with no significant clinical response. However, treatment with tipifarnib resulted in a durable partial response that lasted 8 months. Serial genomic and transcriptomic analyses demonstrated upregulation of YAP1 and AXL in metastatic lesions compared with the primary tumor, the evolution of the tumor microenvironment from an immune-enriched to a fibrotic subtype with increased angiogenesis, and activation of the PI3K/AKT/mTOR pathway in tipifarnib treatment. Lastly, in HRAS-mutated PDXs and in the syngeneic HRAS model, we demonstrated that tipifarnib efficacy is limited by activation of the AKT pathway, and dual treatment with tipifarnib and the PI3K inhibitor, BYL719, resulted in enhanced anti-tumor efficacy. Our case study highlights the potential of targeting HRAS mutations with tipifarnib in R/M HNSCC and identifies potential mechanisms of acquired resistance to tipifarnib, along with immuno-, chemo-, and radiation therapy. Preclinical results provide a firm foundation for further investigation of drug combinations of HRAS-and PI3K -targeting therapeutics in R/M HRAS-driven HNSCC.


Subject(s)
Head and Neck Neoplasms , Proto-Oncogene Proteins c-akt , Quinolones , Female , Humans , Middle Aged , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Recurrence, Local/drug therapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Proto-Oncogene Proteins p21(ras)/genetics
20.
ACS Chem Neurosci ; 15(3): 685-698, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38265210

ABSTRACT

Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC50 = 1.1 nM, 91% Emax), did not elicit a ß-arrestin-2 recruitment functional response (Emax < 10%). Receptor occupancy experiments performed with the novel KOR radiotracer [3H]-PIPE-3113 revealed that subcutaneous (s.c.) administration of PIPE-3297 at 30 mg/kg in mice achieved 90% occupancy of the KOR in the CNS 1 h post dose. A single subcutaneous dose of PIPE-3297 in healthy mice produced a statistically significant increase of mature oligodendrocytes (P < 0.0001) in the KOR-enriched striatum, an effect that was not observed in animals predosed with the selective KOR antagonist norbinaltorphimine. An equivalent dose given to mice in an open-field activity-monitoring system revealed a small KOR-independent decrease in total locomotor activity versus vehicle measured between 60 and 75 min post dose. Daily doses of PIPE-3297 at both 3 and 30 mg/kg s.c. reduced the disease score in the mouse experimental autoimmune encephalomyelitis (EAE) model. Visually evoked potential (VEP) N1 latencies were also significantly improved versus vehicle in both dose groups, and latencies matched those of untreated animals. Taken together, these findings highlight the potential therapeutic value of functionally selective G-protein KOR agonists in demyelinating disease, which may avoid the sedating side effects typically associated with classical nonbiased KOR agonists.


Subject(s)
Receptors, Opioid, kappa , Signal Transduction , Mice , Animals , beta-Arrestin 2/pharmacology , Receptors, Opioid, kappa/agonists , GTP-Binding Proteins/metabolism , Narcotic Antagonists/pharmacology , Analgesics, Opioid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...