Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 14(1): 1818, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245614

ABSTRACT

This study aimed to design an end-to-end deep learning model for estimating the value of fractional flow reserve (FFR) using angiography images to classify left anterior descending (LAD) branch angiography images with average stenosis between 50 and 70% into two categories: FFR > 80 and FFR ≤ 80. In this study 3625 images were extracted from 41 patients' angiography films. Nine pre-trained convolutional neural networks (CNN), including DenseNet121, InceptionResNetV2, VGG16, VGG19, ResNet50V2, Xception, MobileNetV3Large, DenseNet201, and DenseNet169, were used to extract the features of images. DenseNet169 indicated higher performance compared to other networks. AUC, Accuracy, Sensitivity, Specificity, Precision, and F1-score of the proposed DenseNet169 network were 0.81, 0.81, 0.86, 0.75, 0.82, and 0.84, respectively. The deep learning-based method proposed in this study can non-invasively and consistently estimate FFR from angiographic images, offering significant clinical potential for diagnosing and treating coronary artery disease by combining anatomical and physiological parameters.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Deep Learning , Fractional Flow Reserve, Myocardial , Humans , Coronary Stenosis/diagnosis , Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Predictive Value of Tests , Coronary Artery Disease/diagnostic imaging , Severity of Illness Index , Retrospective Studies
2.
Front Oncol ; 13: 1147604, 2023.
Article in English | MEDLINE | ID: mdl-37342184

ABSTRACT

Background: Breast cancer (BC) survival prediction can be a helpful tool for identifying important factors selecting the effective treatment reducing mortality rates. This study aims to predict the time-related survival probability of BC patients in different molecular subtypes over 30 years of follow-up. Materials and methods: This study retrospectively analyzed 3580 patients diagnosed with invasive breast cancer (BC) from 1991 to 2021 in the Cancer Research Center of Shahid Beheshti University of Medical Science. The dataset contained 18 predictor variables and two dependent variables, which referred to the survival status of patients and the time patients survived from diagnosis. Feature importance was performed using the random forest algorithm to identify significant prognostic factors. Time-to-event deep-learning-based models, including Nnet-survival, DeepHit, DeepSurve, NMLTR and Cox-time, were developed using a grid search approach with all variables initially and then with only the most important variables selected from feature importance. The performance metrics used to determine the best-performing model were C-index and IBS. Additionally, the dataset was clustered based on molecular receptor status (i.e., luminal A, luminal B, HER2-enriched, and triple-negative), and the best-performing prediction model was used to estimate survival probability for each molecular subtype. Results: The random forest method identified tumor state, age at diagnosis, and lymph node status as the best subset of variables for predicting breast cancer (BC) survival probabilities. All models yielded very close performance, with Nnet-survival (C-index=0.77, IBS=0.13) slightly higher using all 18 variables or the three most important variables. The results showed that the Luminal A had the highest predicted BC survival probabilities, while triple-negative and HER2-enriched had the lowest predicted survival probabilities over time. Additionally, the luminal B subtype followed a similar trend as luminal A for the first five years, after which the predicted survival probability decreased steadily in 10- and 15-year intervals. Conclusion: This study provides valuable insight into the survival probability of patients based on their molecular receptor status, particularly for HER2-positive patients. This information can be used by healthcare providers to make informed decisions regarding the appropriateness of medical interventions for high-risk patients. Future clinical trials should further explore the response of different molecular subtypes to treatment in order to optimize the efficacy of breast cancer treatments.

3.
Clin Chem Lab Med ; 60(12): 1955-1962, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36044750

ABSTRACT

OBJECTIVES: All patients with cirrhosis should be periodically examined for esophageal varices (EV), however, a large percentage of patients undergoing screening, do not have EV or have only mild EV and do not have high-risk characteristics. Therefore, developing a non-invasive method to predict the occurrence of EV in patients with liver cirrhosis as a non-invasive method with high accuracy seems useful. In the present research, we compared the performance of several machine learning (ML) methods to predict EV on laboratory and clinical data to choose the best model. METHODS: Four-hundred-and-ninety data from the Liver and Gastroenterology Research Center of Shahid Beheshti University of Medical Sciences in the period 2014-2021, were analyzed applying models including random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression. RESULTS: RF and SVM had the best results in general for all grades of EV. RF showed remarkably better results and the highest area under the curve (AUC). After that, SVM and ANN had the AUC of 98%, for grade 3, the SVM algorithm had the highest AUC after RF (89%). CONCLUSIONS: The findings may help to better predict EV with high precision and accuracy and also can help reduce the burden of frequent visits to endoscopic centers. It can also help practitioners to manage cirrhosis by predicting EV with lower costs.


Subject(s)
Esophageal and Gastric Varices , Humans , Esophageal and Gastric Varices/diagnosis , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Area Under Curve , Machine Learning
4.
Comput Intell Neurosci ; 2022: 2564022, 2022.
Article in English | MEDLINE | ID: mdl-35154300

ABSTRACT

Rapid diagnosis of COVID-19 with high reliability is essential in the early stages. To this end, recent research often uses medical imaging combined with machine vision methods to diagnose COVID-19. However, the scarcity of medical images and the inherent differences in existing datasets that arise from different medical imaging tools, methods, and specialists may affect the generalization of machine learning-based methods. Also, most of these methods are trained and tested on the same dataset, reducing the generalizability and causing low reliability of the obtained model in real-world applications. This paper introduces an adversarial deep domain adaptation-based approach for diagnosing COVID-19 from lung CT scan images, termed ADA-COVID. Domain adaptation-based training process receives multiple datasets with different input domains to generate domain-invariant representations for medical images. Also, due to the excessive structural similarity of medical images compared to other image data in machine vision tasks, we use the triplet loss function to generate similar representations for samples of the same class (infected cases). The performance of ADA-COVID is evaluated and compared with other state-of-the-art COVID-19 diagnosis algorithms. The obtained results indicate that ADA-COVID achieves classification improvements of at least 3%, 20%, 20%, and 11% in accuracy, precision, recall, and F1 score, respectively, compared to the best results of competitors, even without directly training on the same data. The implementation source code of the ADA-COVID is publicly available at https://github.com/MehradAria/ADA-COVID.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Lung , Reproducibility of Results , SARS-CoV-2 , Tomography, X-Ray Computed
5.
Biomed Res Int ; 2021: 9942873, 2021.
Article in English | MEDLINE | ID: mdl-34458373

ABSTRACT

PURPOSE: Due to the excessive use of raw materials in diagnostic tools and equipment during the COVID-19 pandemic, there is a dire need for cheaper and more effective methods in the healthcare system. With the development of artificial intelligence (AI) methods in medical sciences as low-cost and safer diagnostic methods, researchers have turned their attention to the use of imaging tools with AI that have fewer complications for patients and reduce the consumption of healthcare resources. Despite its limitations, X-ray is suggested as the first-line diagnostic modality for detecting and screening COVID-19 cases. METHOD: This systematic review assessed the current state of AI applications and the performance of algorithms in X-ray image analysis. The search strategy yielded 322 results from four databases and google scholar, 60 of which met the inclusion criteria. The performance statistics included the area under the receiver operating characteristics (AUC) curve, accuracy, sensitivity, and specificity. RESULT: The average sensitivity and specificity of CXR equipped with AI algorithms for COVID-19 diagnosis were >96% (83%-100%) and 92% (80%-100%), respectively. For common X-ray methods in COVID-19 detection, these values were 0.56 (95% CI 0.51-0.60) and 0.60 (95% CI 0.54-0.65), respectively. AI has substantially improved the diagnostic performance of X-rays in COVID-19. CONCLUSION: X-rays equipped with AI can serve as a tool to screen the cases requiring CT scans. The use of this tool does not waste time or impose extra costs, has minimal complications, and can thus decrease or remove unnecessary CT slices and other healthcare resources.


Subject(s)
Artificial Intelligence , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Algorithms , COVID-19/diagnostic imaging , COVID-19 Testing/methods , Humans , ROC Curve
6.
J Med Internet Res ; 23(4): e27468, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33848973

ABSTRACT

BACKGROUND: Owing to the COVID-19 pandemic and the imminent collapse of health care systems following the exhaustion of financial, hospital, and medicinal resources, the World Health Organization changed the alert level of the COVID-19 pandemic from high to very high. Meanwhile, more cost-effective and precise COVID-19 detection methods are being preferred worldwide. OBJECTIVE: Machine vision-based COVID-19 detection methods, especially deep learning as a diagnostic method in the early stages of the pandemic, have been assigned great importance during the pandemic. This study aimed to design a highly efficient computer-aided detection (CAD) system for COVID-19 by using a neural search architecture network (NASNet)-based algorithm. METHODS: NASNet, a state-of-the-art pretrained convolutional neural network for image feature extraction, was adopted to identify patients with COVID-19 in their early stages of the disease. A local data set, comprising 10,153 computed tomography scans of 190 patients with and 59 without COVID-19 was used. RESULTS: After fitting on the training data set, hyperparameter tuning, and topological alterations of the classifier block, the proposed NASNet-based model was evaluated on the test data set and yielded remarkable results. The proposed model's performance achieved a detection sensitivity, specificity, and accuracy of 0.999, 0.986, and 0.996, respectively. CONCLUSIONS: The proposed model achieved acceptable results in the categorization of 2 data classes. Therefore, a CAD system was designed on the basis of this model for COVID-19 detection using multiple lung computed tomography scans. The system differentiated all COVID-19 cases from non-COVID-19 ones without any error in the application phase. Overall, the proposed deep learning-based CAD system can greatly help radiologists detect COVID-19 in its early stages. During the COVID-19 pandemic, the use of a CAD system as a screening tool would accelerate disease detection and prevent the loss of health care resources.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/virology , Deep Learning , Diagnosis, Computer-Assisted , Lung/diagnostic imaging , Lung/virology , SARS-CoV-2/isolation & purification , Datasets as Topic , Early Diagnosis , Humans , Pandemics , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...