Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(23): e2310043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358310

ABSTRACT

T cells are critical mediators of antigen-specific immune responses and are common targets for immunotherapy. Biomaterial scaffolds have previously been used to stimulate antigen-presenting cells to elicit antigen-specific immune responses; however, structural and molecular features that directly stimulate and expand naïve, endogenous, tumor-specific T cells in vivo have not been defined. Here, an artificial lymph node (aLN) matrix is created, which consists of an extracellular matrix hydrogel conjugated with peptide-loaded-MHC complex (Signal 1), the co-stimulatory signal anti-CD28 (Signal 2), and a tethered IL-2 (Signal 3), that can bypass challenges faced by other approaches to activate T cells in situ such as vaccines. This dynamic immune-stimulating platform enables direct, in vivo antigen-specific CD8+ T cell stimulation, as well as recruitment and coordination of host immune cells, providing an immuno-stimulatory microenvironment for antigen-specific T cell activation and expansion. Co-injecting the aLN with naïve, wild-type CD8+ T cells results in robust activation and expansion of tumor-targeted T cells that kill target cells and slow tumor growth in several distal tumor models. The aLN platform induces potent in vivo antigen-specific CD8+ T cell stimulation without the need for ex vivo priming or expansion and enables in situ manipulation of antigen-specific responses for immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Lymph Nodes , Animals , Lymph Nodes/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Lymphocyte Activation , Hydrogels/chemistry , Immunotherapy/methods , Extracellular Matrix/metabolism , CD28 Antigens/immunology , CD28 Antigens/metabolism , Humans , Interleukin-2/metabolism , Peptides/chemistry , Cell Line, Tumor , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...