Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 16(6): 997-1007, 2022 12.
Article in English | MEDLINE | ID: mdl-36417724

ABSTRACT

Photoplethysmography (PPG) is an attractive method to acquire vital signs such as heart rate and blood oxygenation and is frequently used in clinical and at-home settings. Continuous operation of health monitoring devices demands a low power sensor that does not restrict the device battery life. Silicon photodiodes (PD) and LEDs are commonly used as interface devices in PPG sensors; however, using of flexible organic devices can enhance the sensor conformality and reduce the cost of fabrication. In most PPG sensors, most of system power consumption is concentrated in powering LEDs, traditionally consuming mWs. Using organic devices further increases this power demand since these devices exhibit larger parasitic capacitances and typically need higher drive voltages.This work presents a sensor IC for continuous SpO 2 and HR monitoring that features an on-chip reconstruction-free sparse sampling algorithm to reduce the overall system power consumption by  âˆ¼ 70% while maintaining the accuracy of the output information. The designed frontend is compatible with a wide range of devices from silicon PDs to organic PDs with parasitic capacitances up to 10 nF. Implemented in a 40 nm HV CMOS process, the chip occupies 2.43 mm 2 and consumes 49.7 µW and 15.2 µW of power in continuous and sparse sampling modes respectively. The performance of the sensor IC has been verified in vivo with both types of devices and the results are compared against a clinical grade reference. Less than 1 bpm and 1% mean absolute errors were achieved in both continuous and sparse modes of operation.


Subject(s)
Photoplethysmography , Silicon , Heart Rate/physiology , Algorithms , Electric Power Supplies
2.
Sensors (Basel) ; 22(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35684715

ABSTRACT

Plant-available nitrogen, often in the form of nitrate, is an essential nutrient for plant growth. However, excessive nitrate in the environment and watershed has harmful impacts on natural ecosystems and consequently human health. A distributed network of nitrate sensors could help to quantify and monitor nitrogen in agriculture and the environment. Here, we have developed fully printed potentiometric nitrate sensors and characterized their sensitivity and selectivity to nitrate. Each sensor comprises an ion-selective electrode and a reference electrode that are functionalized with polymeric membranes. The sensitivity of the printed ion-selective electrodes was characterized by measuring their potential with respect to a commercial silver/silver chloride reference electrode in varying concentrations of nitrate solutions. The sensitivity of the printed reference electrodes to nitrate was minimized with a membrane containing polyvinyl butyral (PVB), sodium chloride, and sodium nitrate. Selectivity studies with sulphate, chloride, phosphate, nitrite, ammonium, calcium, potassium, and magnesium showed that high concentrations of calcium can influence sensor behavior. The printed ion-selective and reference electrodes were combined to form a fully printed sensor with sensitivity of -48.0 ± 3.3 mV/dec between 0.62 and 6200 ppm nitrate in solution and -47 ± 4.1 mV/dec in peat soil.


Subject(s)
Nitrates , Soil , Calcium/analysis , Ecosystem , Humans , Ion-Selective Electrodes , Nitrogen
3.
Sensors (Basel) ; 21(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640877

ABSTRACT

Flexible and biodegradable sensors are advantageous for their versatility in a range of areas from smart packaging to agriculture. In this work, we characterize and compare the performance of interdigitated electrode (IDE) humidity sensors printed on different biodegradable substrates. In these IDE capacitive devices, the substrate acts as the sensing layer. The dielectric constant of the substrate increases as the material absorbs water from the atmosphere. Consequently, the capacitance across the electrodes is a function of environmental relative humidity. Here, the performance of polylactide (PLA), glossy paper, and potato starch as a sensing layer is compared to that of nonbiodegradable polyethylene terephthalate (PET). The capacitance across inkjet-printed silver electrodes is measured in environmental conditions ranging from 15 to 90% relative humidity. The sensitivity, response time, hysteresis, and temperature dependency are compared for the sensors. The relationship between humidity and capacitance across the sensors can be modeled by exponential growth with an R2 value of 0.99, with paper and starch sensors having the highest overall sensitivity. The PET and PLA sensors have response and recovery times under 5 min and limited hysteresis. However, the paper and starch sensors have response and recovery times closer to 20 min, with significant hysteresis around 100%. The PET and starch sensors are temperature independent, while the PLA and paper sensors display thermal drift that increases with temperature.


Subject(s)
Silver , Electric Capacitance , Electrodes , Humidity , Temperature
4.
Sci Rep ; 9(1): 13720, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31548553

ABSTRACT

This work reports the process of sensor development, optimization, and characterization before the transition to on-body measurements can be made. Sensors using lactate oxidase as a sensing mechanism and tetrathiafulvalene as a mediator were optimized for sporting applications. Optimized sensors show linear range up to 24 mM lactate and sensitivity of 4.8 µA/mM which normalizes to 68 µA*cm-2/mM when accounting for surface area of the sensor. The optimized sensors were characterized 3 different ways: using commercially available reference and counter electrodes, using printed reference and counter electrodes, and using a printed reference electrode with no counter electrode. Sensors intended for measuring sweat must be selective in the presence of sweat constituents. Thus, in addition to traditional characterization in pH 7.0 buffer, we characterized sensor performance in solutions intended to approximate sweat. Sensor performance in pH 7.0 buffer solution was not reflective of sensor performance in artificial sweat, indicating that further characterization is necessary between sensor measurement in pH 7.0 buffer and on-body measurements. Furthermore, we performed enzyme activity measurements and sensor measurements concurrently in five different salts individually, finding that while NH4Cl and MgCl2 do not affect enzyme activity or sensor performance in physiologically relevant ranges of salt concentration, NaCl concentration or KCl concentration decreases enzyme activity and sensor current. On the other hand, CaCl2 induced a nonlinear change in sensor performance and enzyme activity with increasing salt concentration.

5.
Radiology ; 291(1): 180-185, 2019 04.
Article in English | MEDLINE | ID: mdl-30806599

ABSTRACT

Background Screen-printed MRI coil technology may reduce the need for bulky and heavy housing of coil electronics and may provide a better fit to patient anatomy to improve coil performance. Purpose To assess the performance and caregiver and clinician acceptance of a pediatric-sized screen-printed flexible MRI coil array as compared with conventional coil technology. Materials and Methods A pediatric-sized 12-channel coil array was designed by using a screen-printing process. Element coupling and phantom signal-to-noise ratio (SNR) were assessed. Subjects were scanned by using the pediatric printed array between September and November 2017; results were compared with three age- and sex-matched historical control subjects by using a commercial 32-channel cardiac array at 3 T. Caregiver acceptance was assessed by asking nurses, technologists, anesthesiologists, and subjects or parents to rate their coil preference. Diagnostic quality of the images was evaluated by using a Likert scale (5 = high image quality, 1 = nondiagnostic). Image SNR was evaluated and compared. Results Twenty study participants were evaluated with the screen-printed coil (age range, 2 days to 12 years; 11 male and nine female subjects). Loaded pediatric phantom testing yielded similar noise covariance matrices and only slightly degraded SNR for the printed coil as compared with the commercial coil. The caregiver acceptance survey yielded a mean score of 4.1 ± 0.6 (scale: 1, preferred the commercial coil; 5, preferred the printed coil). Diagnostic quality score was 4.5 ± 0.6. Mean image SNR was 54 ± 49 (paraspinal muscle), 78 ± 51 (abdominal wall muscle), and 59 ± 35 (psoas) for the printed coil, as compared with 64 ± 55, 65 ± 48, and 57 ± 43, respectively, for the commercial coil; these SNR differences were not statistically significant (P = .26). Conclusion A flexible screen-printed pediatric MRI receive coil yields adequate signal-to-noise ratio in phantoms and pediatric study participants, with similar image quality but higher preference by subjects and their caregivers when compared with a conventional MRI coil. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Lamb in this issue.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Printing/methods , Child , Child, Preschool , Equipment Design , Female , Humans , Image Processing, Computer-Assisted , Infant , Infant, Newborn , Magnetic Resonance Imaging/standards , Male , Phantoms, Imaging , Quality Control , Signal-To-Noise Ratio
6.
Adv Biosyst ; 3(10): e1900106, 2019 10.
Article in English | MEDLINE | ID: mdl-32648726

ABSTRACT

Wound healing is a complex process involving diverse changes in multiple cell types where the application of electric fields has been shown to accelerate wound closure. To define the efficacy of therapies based on electric fields, it would be valuable to have a platform to systematically study the effects of electrical stimulation (ES) upon the inflammation phase and the activation of signaling mediators. Here, an in vivo ES model in which flexible electrodes are applied to an animal model for monitoring inflammation in a wound is reported on. Subcutaneous implants of polyvinyl alcohol sponges elicit inflammation response as defined by the infiltration of leukocytes. The wound site is subjected to electric fields using two types of additively fabricated flexible electrode arrays. The sponges are then harvested for flow cytometry analysis to identify changes in the phosphorylation state of intracellular targets. This platform enables studies of molecular mechanisms, as it shows that an application of low-frequency ES ≤0.5 Hz increases phosphorylation of Erk proteins in recruited leukocytes, identifying a signaling pathway that is activated during the healing process.


Subject(s)
Electric Stimulation , Inflammation/immunology , Leukocytes , Phosphorylation/radiation effects , Wound Healing , Animals , Equipment Design , Flow Cytometry/instrumentation , Flow Cytometry/methods , Leukocytes/immunology , Leukocytes/radiation effects , Mice , Mice, Inbred C57BL , Phosphorylation/immunology , Signal Transduction/immunology , Signal Transduction/radiation effects , Wound Healing/immunology , Wound Healing/radiation effects
7.
Sci Rep ; 8(1): 3392, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467432

ABSTRACT

In magnetic resonance guided focused ultrasound (MRgFUS) therapy sound waves are focused through the body to selectively ablate difficult to access lesions and tissues. A magnetic resonance imaging (MRI) scanner non-invasively tracks the temperature increase throughout the tissue to guide the therapy. In clinical MRI, tightly fitted hardware comprised of multichannel coil arrays are required to capture high quality images at high spatiotemporal resolution. Ablating tissue requires a clear path for acoustic energy to travel but current array materials scatter and attenuate acoustic energy. As a result coil arrays are placed outside of the transducer, clear of the beam path, compromising imaging speed, resolution, and temperature accuracy of the scan. Here we show that when coil arrays are fabricated by additive manufacturing (i.e., printing), they exhibit acoustic transparency as high as 89.5%. This allows the coils to be placed in the beam path increasing the image signal to noise ratio (SNR) five-fold in phantoms and volunteers. We also characterize printed coil materials properties over time when submerged in the water required for acoustic coupling. These arrays offer high SNR and acceleration capabilities, which can address current challenges in treating head and abdominal tumors allowing MRgFUS to give patients better outcomes.


Subject(s)
Acoustics/instrumentation , Equipment Design/instrumentation , Magnetic Resonance Imaging/instrumentation , Animals , Brain/diagnostic imaging , Cattle , Head/diagnostic imaging , Humans , Phantoms, Imaging , Signal-To-Noise Ratio , Transducers
8.
Sci Adv ; 3(6): e1602051, 2017 06.
Article in English | MEDLINE | ID: mdl-28630897

ABSTRACT

Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries. This approach uses current collectors with enhanced mechanical design, such as helical springs and serpentines, as a structural support and backbone for all battery components. We show wire-shaped batteries based on helical band springs that are resilient to fatigue and retain electrochemical performance over 17,000 flexure cycles at a 0.5-cm bending radius. Serpentine-shaped batteries can be stretched with tunable degree and directionality while maintaining their specific capacity. Finally, the batteries are integrated, as a wearable device, with a photovoltaic module that enables recharging of the batteries.


Subject(s)
Electric Power Supplies , Electronics , Wearable Electronic Devices , Electrochemical Techniques , Equipment Design , Mechanical Phenomena
9.
ACS Appl Mater Interfaces ; 9(7): 6390-6400, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28151639

ABSTRACT

Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm2) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.

10.
Adv Mater ; 27(41): 6411-7, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26398103

ABSTRACT

All-printed organic photodiode arrays on plastic are reported with average specific detectivities of 3.45 × 10(13) cm Hz(0.5) W(-1) at a bias of -5 V. The blade-coated polyethylenimine cathode interlayer and active layer, and screen-printed anode enable precise device performance tunability and excellent homogeneity at centimetric scales. These devices' high operational reverse bias, good linear dynamic range, and bias stress stability make them attractive for implementation in imaging systems.

11.
Nat Commun ; 6: 6575, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25779688

ABSTRACT

When pressure is applied to a localized area of the body for an extended time, the resulting loss of blood flow and subsequent reperfusion to the tissue causes cell death and a pressure ulcer develops. Preventing pressure ulcers is challenging because the combination of pressure and time that results in tissue damage varies widely between patients, and the underlying damage is often severe by the time a surface wound becomes visible. Currently, no method exists to detect early tissue damage and enable intervention. Here we demonstrate a flexible, electronic device that non-invasively maps pressure-induced tissue damage, even when such damage cannot be visually observed. Using impedance spectroscopy across flexible electrode arrays in vivo on a rat model, we find that impedance is robustly correlated with tissue health across multiple animals and wound types. Our results demonstrate the feasibility of an automated, non-invasive 'smart bandage' for early detection of pressure ulcers.


Subject(s)
Electric Impedance , Pressure Ulcer/diagnosis , Animals , Automation , Calibration , Dielectric Spectroscopy , Electrodes , Equipment Design , Male , Materials Testing , Naphthalenes/chemistry , Polyethylene/chemistry , Pressure , Rats , Rats, Sprague-Dawley , Wound Healing
12.
Adv Mater ; 26(32): 5722-7, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24941920

ABSTRACT

A combination of surface energy-guided blade coating and inkjet printing is used to fabricate an all-printed high performance, high yield, and low variability organic thin film transistor (OTFT) array on a plastic substrate. Functional inks and printing processes were optimized to yield self-assembled homogenous thin films in every layer of the OTFT stack. Specifically, we investigated the effect of capillary number, semiconductor ink composition (small molecule-polymer ratio), and additive high boiling point solvent concentrations on film fidelity, pattern design, device performance and yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...