Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399023

ABSTRACT

Fatigue fractures in materials are the main cause of approximately 80% of all material failures, and it is believed that such failures can be predicted and mathematically calculated in a reliable manner. It is possible to establish prediction modalities in cases of fatigue fractures according to three fundamental variables in fatigue, such as volume, number of fracture cycles, as well as applied stress, with the integration of Weibull constants (length characteristic). In this investigation, mechanical fatigue tests were carried out on specimens smaller than 4 mm2, made of different industrial materials. Their subsequent analysis was performed through precision computed tomography, in search for microfractures. The measurement of these microfractures, along with their metrics and classifications, was recorded. A convolutional neural network trained with deep learning was used to achieve the detection of microfractures in image processing. The detection of microfractures in images with resolutions of 480 × 854 or 960 × 960 pixels is the primary objective of this network, and its accuracy is above 95%. Images that have microfractures and those without are classified using the network. Subsequently, by means of image processing, the microfracture is isolated. Finally, the images containing this feature are interpreted using image processing to obtain their area, perimeter, characteristic length, circularity, orientation, and microfracture-type metrics. All values are obtained in pixels and converted to metric units (µm) through a conversion factor based on image resolution. The growth of microfractures will be used to define trends in the development of fatigue fractures through the studies presented.

2.
Sensors (Basel) ; 16(5)2016 04 27.
Article in English | MEDLINE | ID: mdl-27128923

ABSTRACT

Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

3.
Chemosphere ; 72(3): 465-72, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18355891

ABSTRACT

The production of Mg-rich carbonates by Idiomarina bacteria at modern seawater salinities has been investigated. With this objective, four strains: Idiomarina abyssalis (strain ATCC BAA-312), Idiomarina baltica (strain DSM 15154), Idiomarina loihiensis (strains DSM 15497 and MAH1) were used. The strain I. loihiensis MAH1 is a new isolate, identified in the scope of this work. The four moderately halophilic strains precipitated struvite (NH4MgPO4 x 6H2O) crystals that appear encased by small Ca-Mg kutnahorite [CaMg(CO3)2] spheres and dumbbells, which are also regularly distributed in the bacterial colonies. The proportion of Ca-Mg kutnahorite produced by the bacteria assayed ranged from 50% to 20%, and I. abyssalis also produced monohydrocalcite. All precipitated minerals appeared to be related to the bacterial metabolism and, consequently, can be considered biologically induced. Amino acid metabolism resulted in a release of ammonia and CO2 that increase the pH and CO(3)(2-) concentration of the culture medium, creating an alkaline environment that favoured carbonate and struvite precipitation. This precipitation may be also related to heterogeneous nucleation on negatively charged points of biological structures. Because the nature of the organic matrix determines which ion is preferentially adsorbed and, consequently, which mineral phase is formed, the uniquely high content in odd-iso-branched fatty acids of the Idiomarina suggests that their particular membrane characteristics could induce Ca-Mg kutnahorite production. The Ca-Mg kutnahorite, a mineral with a dolomite-ordered structure, production at seawater salinities is noticeable. To date, such precipitation in laboratory cultures, has only been described in hypersaline conditions. It has also been the first time that biomineralization processes have been related to Idiomarina bacteria.


Subject(s)
Alteromonadaceae/metabolism , Magnesium Compounds/metabolism , Phosphates/metabolism , Seawater/microbiology , Alteromonadaceae/classification , Alteromonadaceae/ultrastructure , Ammonia/metabolism , Carbon Dioxide/metabolism , Magnesium Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phosphates/chemistry , Phylogeny , Protons , RNA, Ribosomal, 16S/genetics , Salinity , Seawater/chemistry , Struvite
4.
Appl Environ Microbiol ; 69(9): 5722-5, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12957970

ABSTRACT

Bacterial precipitation of barite (BaSO(4)) under laboratory conditions is reported for the first time. The bacterium Myxococcus xanthus was cultivated in a solid medium with a diluted solution of barium chloride. Crystallization occurred as a result of the presence of live bacteria and the bacterial metabolic activity. A phosphorous-rich amorphous phase preceded the more crystalline barite formation. These experiments may indicate the involvement of bacteria in the barium biogeochemical cycle, which is closely related to the carbon cycle.


Subject(s)
Barium Sulfate/pharmacology , Myxococcus xanthus/isolation & purification , Barium Sulfate/chemistry , Microscopy, Electron, Scanning , Myxococcus xanthus/drug effects , Myxococcus xanthus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...