Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1148831, 2023.
Article in English | MEDLINE | ID: mdl-37065849

ABSTRACT

Before fertilization, spermatozoa must undergo calcium-regulated acrosome exocytosis in response to physiological stimuli such as progesterone and zona pellucida. Our laboratory has elucidated the signaling cascades accomplished by different sphingolipids during human sperm acrosomal exocytosis. Recently, we established that ceramide increases intracellular calcium by activating various channels and stimulating the acrosome reaction. However, whether ceramide induces exocytosis on its own, activation of the ceramide kinase/ceramide 1-phosphate (CERK/C1P) pathway or both is still an unsolved issue. Here, we demonstrate that C1P addition induces exocytosis in intact, capacitated human sperm. Real-time imaging in single-cell and calcium measurements in sperm population showed that C1P needs extracellular calcium to induce [Ca2+]i increase. The sphingolipid triggered the cation influx through voltage-operated calcium (VOC) and store-operated calcium (SOC) channels. However, it requires calcium efflux from internal stores through inositol 3-phosphate receptors (IP3R) and ryanodine receptors (RyR) to achieve calcium rise and the acrosome reaction. We report the presence of the CERK in human spermatozoa, the enzyme that catalyzes C1P synthesis. Furthermore, CERK exhibited calcium-stimulated enzymatic activity during the acrosome reaction. Exocytosis assays using a CERK inhibitor demonstrated that ceramide induces acrosomal exocytosis, mainly due to C1P synthesis. Strikingly, progesterone required CERK activity to induce intracellular calcium increase and acrosome exocytosis. This is the first report, implicating the bioactive sphingolipid C1P in the physiological progesterone pathway leading to the sperm acrosome reaction.

2.
Nat Commun ; 12(1): 3855, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158477

ABSTRACT

Human voltage-gated proton channels (hHv1) extrude protons from cells to compensate for charge and osmotic imbalances due metabolism, normalizing intracellular pH and regulating protein function. Human albumin (Alb), present at various levels throughout the body, regulates oncotic pressure and transports ligands. Here, we report Alb is required to activate hHv1 in sperm and neutrophils. Dose-response studies reveal the concentration of Alb in semen is too low to activate hHv1 in sperm whereas the higher level in uterine fluid yields proton efflux, allowing capacitation, the acrosomal reaction, and oocyte fertilization. Likewise, Alb activation of hHv1 in neutrophils is required to sustain production and release of reactive oxygen species during the immune respiratory burst. One Alb binds to both voltage sensor domains (VSDs) in hHv1, enhancing open probability and increasing proton current. A computational model of the Alb-hHv1 complex, validated by experiments, identifies two sites in Alb domain II that interact with the VSDs, suggesting an electrostatic gating modification mechanism favoring the active "up" sensor conformation. This report shows how sperm are triggered to fertilize, resolving how hHv1 opens at negative membrane potentials in sperm, and describes a role for Alb in physiology that will operate in the many tissues expressing hHv1.


Subject(s)
Albumins/metabolism , Inflammation Mediators/metabolism , Ion Channels/metabolism , Neutrophils/metabolism , Sperm Capacitation/physiology , Acrosome Reaction/physiology , Albumins/chemistry , Amino Acid Sequence , Fertilization/physiology , Humans , Ion Channel Gating/physiology , Ion Channels/chemistry , Ion Channels/genetics , Male , Membrane Potentials/physiology , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protons , Semen/cytology , Semen/metabolism , Sequence Homology, Amino Acid , Spermatozoa/physiology , Static Electricity
3.
Proc Natl Acad Sci U S A ; 115(50): E11847-E11856, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478045

ABSTRACT

Using a de novo peptide inhibitor, Corza6 (C6), we demonstrate that the human voltage-gated proton channel (hHv1) is the main pathway for H+ efflux that allows capacitation in sperm and permits sustained reactive oxygen species (ROS) production in white blood cells (WBCs). C6 was identified by a phage-display strategy whereby ∼1 million novel peptides were fabricated on an inhibitor cysteine knot (ICK) scaffold and sorting on purified hHv1 protein. Two C6 peptides bind to each dimeric channel, one on the S3-S4 loop of each voltage sensor domain (VSD). Binding is cooperative with an equilibrium affinity (Kd) of ∼1 nM at -50 mV. As expected for a VSD-directed toxin, C6 inhibits by shifting hHv1 activation to more positive voltages, slowing opening and speeding closure, effects that diminish with membrane depolarization.


Subject(s)
Ion Channels/physiology , Leukocytes/metabolism , Sperm Capacitation/physiology , Acrosome Reaction/drug effects , Acrosome Reaction/physiology , Amino Acid Sequence , Binding Sites , HEK293 Cells , Humans , Ion Channels/antagonists & inhibitors , Ion Channels/genetics , Male , Membrane Potentials , Peptide Library , Peptides/chemistry , Peptides/pharmacology , Reactive Oxygen Species/metabolism , Respiratory Burst , Sperm Capacitation/drug effects , Toxins, Biological/chemistry , Toxins, Biological/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...