Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Epidemiol ; 38(1): 84-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24248812

ABSTRACT

Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(-07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m(2) (OR = 1.26, 95% CI 1.15-1.38) but not in women with a BMI of 30 kg/m(2) or higher (OR = 0.89, 95% CI 0.72-1.11, P for interaction = 3.2 × 10(-05)). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci.


Subject(s)
Breast Neoplasms/genetics , Gene-Environment Interaction , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Body Height , Body Mass Index , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 6/genetics , Female , Genetic Loci/genetics , Humans , Linkage Disequilibrium/genetics , Menarche , Middle Aged , Parity , Postmenopause , White People/genetics
2.
J Med Genet ; 48(7): 477-84, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21632523

ABSTRACT

BACKGROUND: The XRCC2 gene is a key mediator in the homologous recombination repair of DNA double strand breaks. It is hypothesised that inherited variants in the XRCC2 gene might also affect susceptibility to, and survival from, breast cancer. METHODS: The study genotyped 12 XRCC2 tagging single nucleotide polymorphisms (SNPs) in 1131 breast cancer cases and 1148 controls from the Sheffield Breast Cancer Study (SBCS), and examined their associations with breast cancer risk and survival by estimating ORs and HRs, and their corresponding 95% CIs. Positive findings were further investigated in 860 cases and 869 controls from the Utah Breast Cancer Study (UBCS) and jointly analysed together with available published data for breast cancer risk. The survival findings were further confirmed in studies (8074 cases) from the Breast Cancer Association Consortium (BCAC). RESULTS: The most significant association with breast cancer risk in the SBCS dataset was the XRCC2 rs3218408 SNP (recessive model p=2.3×10(-4), minor allele frequency (MAF)=0.23). This SNP yielded an OR(rec) of 1.64 (95% CI 1.25 to 2.16) in a two-site analysis of SBCS and UBCS, and a meta-OR(rec) of 1.33 (95% CI 1.12 to 1.57) when all published data were included. This SNP may mark a rare risk haplotype carried by two in 1000 of the control population. Furthermore, the XRCC2 coding R188H SNP (rs3218536, MAF=0.08) was significantly associated with poor survival, with an increased per-allele HR of 1.58 (95% CI 1.01 to 2.49) in a multivariate analysis. This effect was still evident in a pooled meta-analysis of 8781 breast cancer patients from the BCAC (HR 1.19, 95% CI 1.05 to 1.36; p=0.01). CONCLUSIONS: These findings suggest that XRCC2 SNPs may influence breast cancer risk and survival.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , DNA-Binding Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Gene Frequency , Genetic Predisposition to Disease , Haplotypes , Humans , Inheritance Patterns/genetics , Middle Aged , Risk , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...