Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670100

ABSTRACT

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Subject(s)
Autism Spectrum Disorder , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Nerve Tissue Proteins , Thalamus , Animals , Thalamus/metabolism , Thalamus/pathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , Lamotrigine/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Channelopathies/pathology , Humans , Disease Models, Animal , Male , Neurons/metabolism , Female , Mice, Inbred C57BL , Mutation/genetics , Sleep/physiology , Sleep/drug effects , Sleep/genetics , Potassium Channels
3.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608654

ABSTRACT

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Subject(s)
Cell Differentiation , Transcription Factors , Humans , Chromatin , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Atlases as Topic
5.
J Vis Exp ; (177)2021 11 22.
Article in English | MEDLINE | ID: mdl-34866625

ABSTRACT

Fine motor skills are essential in everyday life and can be compromised in several nervous system disorders. The acquisition and performance of these tasks require sensory-motor integration and involve precise control of bilateral brain circuits. Implementing unimanual behavioral paradigms in animal models will improve the understanding of the contribution of brain structures, like the striatum, to complex motor behavior as it allows manipulation and recording of neural activity of specific nuclei in control conditions and disease during the performance of the task. Since its creation, optogenetics has been a dominant tool for interrogating the brain by enabling selective and targeted activation or inhibition of neuronal populations. The combination of optogenetics with behavioral assays sheds light on the underlying mechanisms of specific brain functions. Wireless head-mounted systems with miniaturized light-emitting diodes (LEDs) allow remote optogenetic control in an entirely free-moving animal. This avoids the limitations of a wired system being less restrictive for animals' behavior without compromising light emission efficiency. The current protocol combines a wireless optogenetics approach with high-speed videography in a unimanual dexterity task to dissect the contribution of specific neuronal populations to fine motor behavior.


Subject(s)
Brain , Optogenetics , Animals , Behavior, Animal , Brain/physiology , Corpus Striatum , Neurons/physiology , Optogenetics/methods , Wireless Technology
6.
Neuroscience ; 458: 153-165, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33428968

ABSTRACT

Differences in the intrinsic properties of intralaminar thalamo-striatal neurons such as expressing low-threshold-spikes (LTS) or after hyperpolarizing potentials (AHPs) of different duration have been attributed to different maturation stages. However, two morphological types: "diffuse" and "bushy" have been described. Therefore, we explored whether electrophysiological differences persist in adult mice using whole cell recordings. Some recorded neurons were identified by intracellular labeling with biocytin and double labeling with retrograde or anterograde tracings using Cre-mice. We classified these neurons by their AHPs during spontaneous firing. Neurons with long duration AHPs, with fast and slow components, were mostly found in the parafascicular (Pf) nucleus. Neurons with brief AHPs were mainly found in the central lateral (CL) nucleus. However, neurons with both AHPs were found in both nuclei in different proportions. Firing frequency adaptation differed between these neuron classes: those with prolonged AHPs exhibited firing frequency adaptation with fast and slow time constants whereas those with brief AHPs were slow adapters. Neurons with more prolonged AHPs had significant higher input resistances than neurons with brief AHPs. Both cell classes could fire in two modes: trains of single action potentials at depolarized potentials or high frequency bursts on top of LTS at more hyperpolarized potentials. LTS were probably generated by Cav3 calcium channels since they were blocked by the selective antagonist TTA-P2. About 11% of neurons with brief AHPs and 55% of neurons with prolonged AHPs do not show LTS and bursts, even when potassium currents are blocked.


Subject(s)
Corpus Striatum , Neurons , Action Potentials , Animals , Calcium Channels , Mice
7.
Dev Biol ; 468(1-2): 93-100, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32976839

ABSTRACT

Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a leading monogenic cause of autism. While cortical hyperexcitability is a hallmark of FXS, the reported phenotypes and underlying mechanisms, including alterations in synaptic transmission and ion channel properties, are heterogeneous and at times contradictory. Here, we report the generation of new isogenic FMR1y/+ and FMR1y/- human pluripotent stem cell (hPSC) lines using CRISPR-Cas9 to facilitate the study of how complete FMRP loss, independent of genetic background, drives molecular and cellular alterations relevant for FXS. After differentiating these stem cell tools into excitatory neurons, we systematically assessed the impact of FMRP loss on intrinsic membrane and synaptic properties over time. Using whole-cell patch clamp analyses, we found that FMR1y/- neurons overall showed an increased intrinsic membrane excitability compared to age-matched FMR1y/+ controls, with no discernable alternations in synaptic transmission. Surprisingly, longitudinal analyses of cell intrinsic defects revealed that a majority of significant changes emerged early following in vitro differentiation and some were not stable over time. Collectively, this study provides a new isogenic hPSC model which can be further leveraged by the scientific community to investigate basic mechanisms of FMR1 gene function relevant for FXS. Moreover, our results suggest that precocious changes in the intrinsic membrane properties during early developmental could be a critical cellular pathology ultimately contributing to cortical hyperexcitability in FXS.


Subject(s)
Cell Differentiation , Cell Membrane/metabolism , Fragile X Mental Retardation Protein/genetics , Human Embryonic Stem Cells/metabolism , Membrane Potentials , Neurons/metabolism , Synaptic Transmission , Cell Line , Cell Membrane/genetics , Fragile X Mental Retardation Protein/metabolism , Human Embryonic Stem Cells/cytology , Humans
8.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Article in English | MEDLINE | ID: mdl-32807948

ABSTRACT

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Interneurons/physiology , Animals , Callithrix , Cerebral Cortex/cytology , Female , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neurons , Parvalbumins/physiology , Rats , Rats, Sprague-Dawley , Species Specificity , Vasoactive Intestinal Peptide/physiology
9.
Nature ; 583(7818): 819-824, 2020 07.
Article in English | MEDLINE | ID: mdl-32699411

ABSTRACT

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Subject(s)
Gene Regulatory Networks , Thalamic Nuclei/cytology , Thalamic Nuclei/metabolism , Animals , Cluster Analysis , Female , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Metalloendopeptidases/metabolism , Mice , Neural Pathways , Neurons/metabolism , Osteopontin/metabolism , Patch-Clamp Techniques , RNA-Seq , Single-Cell Analysis , Sleep/genetics , Sleep/physiology , Thalamic Nuclei/physiology , Transcriptome
10.
Transl Psychiatry ; 10(1): 29, 2020 01 23.
Article in English | MEDLINE | ID: mdl-32066662

ABSTRACT

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.


Subject(s)
Calcium Channels, T-Type , Schizophrenia , Animals , Electroencephalography , Humans , Mice , Schizophrenia/genetics , Sleep , Sleep, REM
11.
Neuroreport ; 30(6): 457-462, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30920433

ABSTRACT

The ionic driving force for the chloride-permeable GABAA receptor is subject to spatial control and distribution of chloride transporters. NKCC1 and KCC2 are mostly expressed in neurons in a specific manner. In the striatum, the localization of these transporters in identified neurons is unknown. In this study, the expression of these transporters was found to be different between projection neurons and interneurons. NKCC1 immunoreactivity was observed in the soma of adult BAC-D1-eGFP+ and D2-eGFP+ striatal projection neurons (SPNs). KCC2 was not expressed in either projection neuron and immunoreactivity to this transporter was observed only in the neuropile. However, NKCC1 and KCC2 co-transporters were not localized in intracellular biocytin-injected dendrites of SPNs of the direct or indirect pathways (D1-SPNs and D2-SPNs). Experiments with PV Cre transgenic mice transfected with Cre-dependent adeno-associated viruses containing tdTomato in the striatum showed a cell-type-specific distribution of KCC2 chloride transporter co-expression associated with PV interneurons. Thus, depolarizing actions of GABA responses in adult projection neurons can be explained by the expression and somatic localization of the NKCC1 transporters. A somato/dendritic distribution of KCC2 expression was observed only in striatal interneurons and corresponds to the hyperpolarizing action of GABA recorded in these cells. This correlates the different roles for GABA actions in striatal neuronal excitability with the expression of specific chloride transporters.


Subject(s)
Corpus Striatum/metabolism , Neurons/metabolism , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , K Cl- Cotransporters
12.
J Neurosci ; 36(50): 12511-12529, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974611

ABSTRACT

Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT: We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.


Subject(s)
Feeding Behavior/physiology , Glutamates/physiology , Hypothalamic Area, Lateral/physiology , Nerve Fibers/physiology , Nucleus Accumbens/cytology , Nucleus Accumbens/physiology , Prefrontal Cortex/physiology , Reward , Animals , Channelrhodopsins , Female , Male , Mice , Neurons, Afferent/physiology , Optogenetics , Patch-Clamp Techniques , Self Stimulation , Synapses/physiology
13.
Neuropharmacology ; 89: 232-44, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25290553

ABSTRACT

Models of basal ganglia (BG) function posit a dynamic balance between two classes of striatal projection neurons (SPNs): direct pathway neurons (dSPNs) that facilitate movements, and indirect pathway neurons (iSPNs) that repress movement execution. Two main modulatory transmitters regulate the output of these neurons: dopamine (DA) and acetylcholine (ACh). dSPNs express D1-type DA, M1-and M4-type ACh receptors, while iSPNs express D2-type DA and M1-type ACh receptors. Actions of M1-, D1-, and D2-receptors have been extensively reported, but we still ignore most actions of muscarinic M4-type receptors. Here, we used whole-cell recordings in acutely dissociated neurons, pharmacological tools such as mamba-toxins, and BAC D(1 or 2)-eGFP transgenic mice to show that activation of M4-type receptors with bath applied muscarine enhances Ca(2+)-currents through CaV1-channels in dSPNs and not in iSPNs. This action increases excitability of dSPNs after both direct current injection and synaptically driven stimulation. The increases in Ca(2+)-current and excitability were blocked specifically by mamba toxin-3, suggesting mediation via M4-type receptors. M4-receptor activation also increased network activity of dSPNs but not of iSPNs as seen with calcium-imaging techniques. Moreover, actions of D1-type and M4-type receptors may add to produce a larger enhancement of excitability of dSPNs or, paradoxically, oppose each other depending on the order of their activation. Possible implications of these findings are discussed.


Subject(s)
Corpus Striatum/cytology , Neural Pathways/physiology , Neurons/physiology , Receptor, Muscarinic M4/metabolism , Acetylcholine/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Cells, Cultured , Dopamine/pharmacology , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mice, Transgenic , Neural Pathways/drug effects , Neurons/drug effects , Nicardipine/pharmacology , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
14.
Front Syst Neurosci ; 7: 63, 2013.
Article in English | MEDLINE | ID: mdl-24109439

ABSTRACT

The firing of striatal projection neurons (SPNs) exhibits afterhyperpolarizing potentials (AHPs) that determine discharge frequency. They are in part generated by Ca(2+)-activated K(+)-currents involving BK and SK components. It has previously been shown that suprathreshold corticostriatal responses are more prolonged and evoke more action potentials in direct pathway SPNs (dSPNs) than in indirect pathway SPNs (iSPNs). In contrast, iSPNs generate dendritic autoregenerative responses. Using whole cell recordings in brain slices, we asked whether the participation of Ca(2+)-activated K(+)-currents plays a role in these responses. Secondly, we asked if these currents may explain some differences in synaptic integration between dSPNs and iSPNs. Neurons obtained from BAC D1 and D2 GFP mice were recorded. We used charybdotoxin and apamin to block BK and SK channels, respectively. Both antagonists increased the depolarization and delayed the repolarization of suprathreshold corticostriatal responses in both neuron classes. We also used NS 1619 and NS 309 (CyPPA), to enhance BK and SK channels, respectively. Current enhancers hyperpolarized and accelerated the repolarization of corticostriatal responses in both neuron classes. Nevertheless, these drugs made evident that the contribution of Ca(2+)-activated K(+)-currents was different in dSPNs as compared to iSPNs: in dSPNs their activation was slower as though calcium took a diffusion delay to activate them. In contrast, their activation was fast and then sustained in iSPNs as though calcium flux activates them at the moment of entry. The blockade of Ca(2+)-activated K(+)-currents made iSPNs to look as dSPNs. Conversely, their enhancement made dSPNs to look as iSPNs. It is concluded that Ca(2+)-activated K(+)-currents are a main intrinsic determinant causing the differences in synaptic integration between corticostriatal polysynaptic responses between dSPNs and iSPNs.

15.
BMC Neurosci ; 14: 60, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23782743

ABSTRACT

BACKGROUND: Previous work showed differences in the polysynaptic activation of GABAergic synapses during corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (dSPNs and iSPNs). Here, we now show differences and similarities in the polysynaptic activation of cortical glutamatergic synapses on the same responses. Corticostriatal contacts have been extensively studied. However, several questions remain unanswered, e.g.: what are the differences and similarities in the responses to glutamate in dSPNs and iSPNs? Does glutamatergic synaptic activation exhibits a distribution of latencies over time in vitro? That would be a strong suggestion of polysynaptic cortical convergence. What is the role of kainate receptors in corticostriatal transmission? Current-clamp recordings were used to answer these questions. One hypothesis was: if prolonged synaptic activation distributed along time was present, then it would be mainly generated from the cortex, and not from the striatum. RESULTS: By isolating responses from AMPA-receptors out of the complex suprathreshold response of SPNs, it is shown that a single cortical stimulus induces early and late synaptic activation lasting hundreds of milliseconds. Prolonged responses depended on cortical stimulation because they could not be elicited using intrastriatal stimulation, even if GABAergic transmission was blocked. Thus, the results are not explained by differences in evoked inhibition. Moreover, inhibitory participation was larger after cortical than after intrastriatal stimulation. A strong activation of interneurons was obtained from the cortex, demonstrating that polysynaptic activation includes the striatum. Prolonged kainate (KA) receptor responses were also elicited from the cortex. Responses of dSPNs and iSPNs did not depend on the cortical area stimulated. In contrast to AMPA-receptors, responses from NMDA- and KA-receptors do not exhibit early and late responses, but generate slow responses that contribute to plateau depolarizations. CONCLUSIONS: As it has been established in previous physiological studies in vivo, synaptic invasion over different latencies, spanning hundreds of milliseconds after a single stimulus strongly indicates convergent polysynaptic activation. Interconnected cortical neurons converging on the same SPNs may explain prolonged corticostriatal responses. Glutamate receptors participation in these responses is described as well as differences and similarities between dSPNs and iSPNs.


Subject(s)
Cerebral Cortex/cytology , Corpus Striatum/cytology , Neural Pathways/physiology , Neurons/physiology , Receptors, Glutamate/metabolism , Synapses/metabolism , Animals , Bicuculline/pharmacology , Biophysics , Electric Stimulation , Excitatory Amino Acid Agents/pharmacology , GABA-A Receptor Antagonists/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Mice , Mice, Transgenic , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics , Receptors, Glutamate/classification , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...