Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36679808

ABSTRACT

The production of thermoluminescence (TL) dosimeters fabricated from B2O3-CaF2-Al2O3-SiO2 doped with Cu and Pr for use in diagnostic radiology is the main goal of this research. The TL samples were synthesized via the melt-quench technique processed by melting the mixture at 1200 °C for 1 h, and, after cooling, the sample thus created was divided into two samples and retreated by heating for 2 h (referred to as TLV30) and for 15 h (referred to as TLV17). SEM and EDS analyses were performed on the TL samples to confirm the preparation process and to investigate the effects of irradiation dosimetry on the TL samples. Furthermore, the TL samples were irradiated with γ-rays using a 450 Ci 137Cs irradiator and variable X-ray beams (5-70 mGy). Two important diagnostic radiology applications were considered: CT (6-24 mGy) and mammography (2.72-10.8 mGy). Important dosimetric properties, such as the glow curves, reproducibility, dose-response linearity, energy dependence, minimum dose detectability and fading, were investigated for the synthetized samples (TLV17 and TLV30), the results of which were compared with the Harshaw TLD-100. The TLV17 dosimeter showed higher sensitivity than TLV30 in all applied irradiation procedures. The dose-response linearity coefficients of determination R2 for TLV17 were higher than TLD-100 and TLV30 in some applications and were almost equal in others. The reproducibility results of TLV17, TLV30 and TLD-100 were less than 5%, which is acceptable. On the other hand, the results of the fading investigations showed that, in general, TLV17 showed less fading than TLV30. Both samples showed a significant decrease in this regard after the first day, and then the signal variation became essentially stable though with a slight decrease until the eighth day. Therefore, it is recommended to read the TL dosimeters after 24 h, as with TLD-100. The SEM images confirmed the existence of crystallization, whilst the EDS spectra confirmed the presence of the elements used for preparation. Furthermore, we noticed that TLV17 had grown dense crystals that were larger in size compared to those of TLV30, which explains the higher sensitivity in TLV17. Overall, despite the fading, TLV17 showed greater radiation sensitivity and dose-response linearity compared with TLD-100. The synthetized TL samples showed their suitability for use as dosimeters in diagnostic radiology radiation dosimetry.


Subject(s)
Radiology , Silicon , Radiation Dosimeters , Aluminum , Calcium , Hot Temperature , Silicon Dioxide , Reproducibility of Results , Borates , Thermoluminescent Dosimetry , Radiometry
2.
Appl Radiat Isot ; 192: 110576, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36473319

ABSTRACT

The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.


Subject(s)
Radiosurgery , Robotic Surgical Procedures , Radiosurgery/methods , Polymers , Monte Carlo Method , Diamond , Radiometry/methods , Photons/therapeutic use
3.
Med Phys ; 49(8): 5537-5550, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717637

ABSTRACT

PURPOSE: The aim of this work was to test the implementation of small field dosimetry following TRS-483 and to develop quality assurance procedures for the experimental determination of small field output factors (SFOFs). MATERIALS AND METHODS: Twelve different centers provided SFOFs determined with various detectors. Various linac models using the beam qualities 6 MV and 10 MV with flattening filter and without flattening filter were utilized to generate square fields down to a nominal field size of 0.5 cm × 0.5 cm. The detectors were positioned at 10 cm depth in water. Depending on the local situation, the source-to-surface distance was either set to 90 cm or 100 cm. The SFOFs were normalized to the output of the 10 cm × 10 cm field. The spread of SFOFs measured with different detectors was investigated for each individual linac beam quality and field size. Additionally, linac-type specific SFOF curves were determined for each beam quality and the SFOFs determined using individual detectors were compared to these curves. Example uncertainty budgets were established for a solid state detector and a micro ionization chamber. RESULTS: The spread of SFOFs for each linac and field was below 5% for all field sizes. With the exception of one linac-type, the SFOFs of all investigated detectors agreed within 10% with the respective linac-type SFOF curve, indicating a potential inter-detector and inter-linac variability. CONCLUSION: Quality assurance on the SFOF measurements can be done by investigation of the spread of SFOFs measured with multiple detectors and by comparison to linac-type specific SFOFs. A follow-up of a measurement session should be conducted if the spread of SFOFs is larger than 5%, 3%, and 2% for field sizes of 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 2 cm × 2 cm, respectively. Additionally, deviations of measured SFOFs to the linac-type-curves of more than 7%, 3%, and 2% for field sizes 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 1 cm × 1 cm, respectively, should be followed up.


Subject(s)
Particle Accelerators , Radiometry , Photons , Uncertainty , Water
4.
Sensors (Basel) ; 22(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408196

ABSTRACT

A CS-30 cyclotron has been in operation at King Faisal Specialist Hospital and Research Center (KFSHRC) since 1982. The CS-30 cyclotron has been used to produce medical radioisotopes for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some of the nuclear reactions of radionuclide production are associated with the intense release of a wide range of fast neutrons. In this work, we investigated the radionuclides produced from neutron interactions with the cyclotron facility walls. Activation isotopes were determined by performing gamma ray spectrometry utilizing a high-purity germanium (HPGe) detector. The major radionuclides found were 152Eu, 154Eu, 134Cs, 65Zn and 60Co. Activation isotope accumulation had increased the dose rate inside the facility. The surface dose rates were measured at all of the surrounding walls. The maximum surface dose rate was found to be 1.2 µSv/h, which is much lower than the permissible occupational exposure of 15 µSv/h based daily 5 work hours.


Subject(s)
Cyclotrons , Occupational Exposure , Neutrons , Occupational Exposure/analysis , Positron-Emission Tomography , Radioisotopes
5.
Phys Med ; 47: 9-15, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29609824

ABSTRACT

Comparisons of national standard of air kerma for conventional and mammographic diagnostic X-ray radiation qualities were conducted by the IAEA. Eleven secondary standards dosimetry laboratories provided calibration data for Exradin A3 and Radcal RC6M transfer ionization chambers circulated. Each comparison result expressed as the ratio of the participant and IAEA calibration coefficient were within the acceptance limit of ±2.5%. From the 67 results of 11 participants and 10 available beam qualities, the comparison result was within its standard uncertainty in 63 cases, and within the expanded (k = 2) uncertainty in four cases. Detailed calibration uncertainty budgets from participant laboratories are presented. The relative standard calibration uncertainty of each participant was in the range of 0.5-1.3%. These results indicate that the calibration related uncertainty component is reasonable low for a clinical measurement. In addition to the calibration coefficient, other corrections should be applied for clinical measurement to achieve the recommended accuracy.


Subject(s)
Air , International Agencies , Radiometry/instrumentation , Radiometry/standards , Reference Standards
6.
Phys Imaging Radiat Oncol ; 5: 58-63, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33458370

ABSTRACT

BACKGROUND AND PURPOSE: An audit methodology for verifying the implementation of output factors (OFs) of small fields in treatment planning systems (TPSs) used in radiotherapy was developed and tested through a multinational research group and performed on a national level in five different countries. MATERIALS AND METHODS: Centres participating in this study were asked to provide OFs calculated by their TPSs for 10 × 10 cm2, 6 × 6 cm2, 4 × 4 cm2, 3 × 3 cm2 and 2 × 2 cm2 field sizes using an SSD of 100 cm. The ratio of these calculated OFs to reference OFs was analysed. The action limit was ±3% for the 2 × 2 cm2 field and ±2% for all other fields. RESULTS: OFs for more than 200 different beams were collected in total. On average, the OFs for small fields calculated by TPSs were generally larger than measured reference data. These deviations increased with decreasing field size. On a national level, 30% and 31% of the calculated OFs of the 2 × 2 cm2 field exceeded the action limit of 3% for nominal beam energies of 6 MV and for nominal beam energies higher than 6 MV, respectively. CONCLUSION: Modern TPS beam models generally overestimate the OFs for small fields. The verification of calculated small field OFs is a vital step and should be included when commissioning a TPS. The methodology outlined in this study can be used to identify potential discrepancies in clinical beam models.

7.
Acta Oncol ; 55(7): 909-16, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26934916

ABSTRACT

UNLABELLED: The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP 'Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques' was conducted in 2009-2012 as an extension of previously developed audit programs. MATERIAL AND METHODS: The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. RESULTS: The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. DISCUSSION: Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs.


Subject(s)
Radiometry/methods , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/methods , Humans , International Agencies , Phantoms, Imaging , Quality Control , Radiation Dosimeters , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/standards , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Thermoluminescent Dosimetry/standards
8.
Radiother Oncol ; 84(1): 67-74, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17628209

ABSTRACT

BACKGROUND AND PURPOSE: A strategy for national TLD audit programmes has been developed by the International Atomic Energy Agency (IAEA). It involves progression through three sequential dosimetry audit steps. The first step audits are for the beam output in reference conditions for high-energy photon beams. The second step audits are for the dose in reference and non-reference conditions on the beam axis for photon and electron beams. The third step audits involve measurements of the dose in reference, and non-reference conditions off-axis for open and wedged symmetric and asymmetric fields for photon beams. Through a co-ordinated research project the IAEA developed the methodology to extend the scope of national TLD auditing activities to more complex audit measurements for regular fields. MATERIALS AND METHODS: Based on the IAEA standard TLD holder for high-energy photon beams, a TLD holder was developed with horizontal arm to enable measurements 5cm off the central axis. Basic correction factors were determined for the holder in the energy range between Co-60 and 25MV photon beams. RESULTS: New procedures were developed for the TLD irradiation in hospitals. The off-axis measurement methodology for photon beams was tested in a multi-national pilot study. The statistical distribution of dosimetric parameters (off-axis ratios for open and wedge beam profiles, output factors, wedge transmission factors) checked in 146 measurements was 0.999+/-0.012. CONCLUSIONS: The methodology of TLD audits in non-reference conditions with a modified IAEA TLD holder has been shown to be feasible.


Subject(s)
Radiotherapy, High-Energy/standards , Thermoluminescent Dosimetry/standards , Feasibility Studies , Humans , International Agencies , Medical Audit , Photons , Pilot Projects , Quality Control , Radiometry , Radiotherapy Dosage/standards , Reference Standards , Reproducibility of Results
9.
J Appl Clin Med Phys ; 7(3): 55-64, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-17533342

ABSTRACT

In the International Atomic Energy Agency's (IAEA) code of practice (TRS 398) and the American Association of Physicists in Medicine's dosimetry protocol (TG-51), full-scatter water phantoms are recommended for the determination of the absorbed dose for both photon and electron beams and, consequently, for the calibration of the user's ionization chambers. This procedure is applied in the Secondary Standard Dosimetry Laboratory, where the calibration is performed on a 60Co gamma beam, in comparison with reference chambers whose absorbed dose-to-water calibration coefficients, ND,w, are known. In this work, we present the results of the calibration of 10 Farmer-like ionization chambers calibrated in three water phantoms (sizes 20 x 20 x 15 cm3, 30 x 30 x 30 cm3, and 35 x 35 x 37 cm3) and two plastic phantoms (size 20 x 20 x 20 cm3) polymethyl methacrlyate (PMMA) and polystyrene). Calibrations are performed by the substitution method using an ionization chamber whose ND,w has been supplied by the IAEA's reference laboratory. It is shown that the results, expressed as the percentage ratio of the calibration coefficient in a given phantom to that of the standard IAEA phantom, is less than 0.35% for all investigated chambers, and that the standard deviation of the mean of the ND,w calibration coefficients determined in all five phantoms is less than 0.06%, except for one nylon-walled ionization chamber, where the observed 0.34% value could be explained by the hygroscopic properties of nylon. Furthermore, a chamber-to-chamber dependence of the calibration coefficient has been shown to vary by up to 2.8%. These results emphasize that the phantom dimensions and its material are not sensitive criteria for the calibration of cylindrical ionization chambers in terms of absorbed dose to water. The results also show that generic calibration coefficients could not be considered for a given type of chamber.


Subject(s)
Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Dosage , Water , Absorption , Calibration/standards , Humans , International Agencies , Phantoms, Imaging/standards , Polymethyl Methacrylate , Polystyrenes , Radiometry/methods , Radiometry/standards , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...