Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771388

ABSTRACT

Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion®, such as Aquivion® PFSA ionomers, is a valid approach to improve fuel cell performance and stability under drastic operative conditions such as those related to automotive applications. In this context, it is necessary to optimize the composition of the catalytic ink, according to the different ionomer characteristics. In this work, the influence of the ionomer amount in the catalytic layer was studied, considering the dispersing agent used to prepare the electrode (water or ethanol). Electrochemical studies were carried out in a single cell in the presence of H2-air, at intermediate temperatures (80-95 °C), low pressure, and reduced humidity ((50% RH). %). The best fuel cell performance was found for 26 wt.% Aquivion® at the electrodes using ethanol for the ink preparation, associated to a maximum catalyst utilization.

2.
Polymers (Basel) ; 13(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923207

ABSTRACT

Methanol crossover through a polymer electrolyte membrane has numerous negative effects on direct methanol fuel cells (DMFCs) because it decreases the cell voltage due to a mixed potential (occurrence of both oxygen reduction and methanol oxidation reactions) at the cathode, lowers the overall fuel utilization and contributes to long-term membrane degradation. In this work, an investigation of methanol transport properties of composite membranes based on sulfonated polysulfone (sPSf) and modified silica filler is carried out using the PFG-NMR technique, mainly focusing on high methanol concentration (i.e., 5 M). The influence of methanol crossover on the performance of DMFCs equipped with low-cost sPSf-based membranes operating with 5 M methanol solution at the anode is studied, with particular emphasis on the composite membrane approach. Using a surface-modified-silica filler into composite membranes based on sPSf allows reducing methanol cross-over of 50% compared with the pristine membrane, making it a good candidate to be used as polymer electrolyte for high energy DMFCs.

3.
Polymers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333931

ABSTRACT

Tandem photo-electro-chemical cells composed of an assembly of a solid electrolyte membrane and two low-cost photoelectrodes have been developed to generate green solar fuel from water-splitting. In this regard, an anion-exchange polymer-electrolyte membrane, able to separate H2 evolved at the photocathode from O2 at the photoanode, was investigated in terms of ionic conductivity, corrosion mitigation, and light transmission for a tandem photo-electro-chemical configuration. The designed anionic membranes, based on polysulfone polymer, contained positive fixed functionalities on the side chains of the polymeric network, particularly quaternary ammonium species counterbalanced by hydroxide anions. The membrane was first investigated in alkaline solution, KOH or NaOH at different concentrations, to optimize the ion-exchange process. Exchange in 1M KOH solution provided high conversion of the groups, a high ion-exchange capacity (IEC) value of 1.59 meq/g and a hydroxide conductivity of 25 mS/cm at 60 °C for anionic membrane. Another important characteristic, verified for hydroxide membrane, was its transparency above 600 nm, thus making it a good candidate for tandem cell applications in which the illuminated photoanode absorbs the highest-energy photons (< 600 nm), and photocathode absorbs the lowest-energy photons. Furthermore, hydrogen crossover tests showed a permeation of H2 through the membrane of less than 0.1%. Finally, low-cost tandem photo-electro-chemical cells, formed by titanium-doped hematite and ionomer at the photoanode and cupric oxide and ionomer at the photocathode, separated by a solid membrane in OH form, were assembled to optimize the influence of ionomer-loading dispersion. Maximum enthalpy (1.7%), throughput (2.9%), and Gibbs energy efficiencies (1.3%) were reached by using n-propanol/ethanol (1:1 wt.) as solvent for ionomer dispersion and with a 25 µL cm-2 ionomer loading for both the photoanode and the photocathode.

4.
Materials (Basel) ; 13(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698468

ABSTRACT

Exsolved perovskites can be obtained from lanthanum ferrites, such as La0.6Sr0.4Fe0.8Co0.2O3, as result of Ni doping and thermal treatments. Ni can be simply added to the perovskite by an incipient wetness method. Thermal treatments that favor the exsolution process include calcination in air (e.g., 500 °C) and subsequent reduction in diluted H2 at 800 °C. These processes allow producing a two-phase material consisting of a Ruddlesden-Popper-type structure and a solid oxide solution e.g., α-Fe100-y-zCoyNizOx oxide. The formed electrocatalyst shows sufficient electronic conductivity under reducing environment at the Solid Oxide Fuel Cell (SOFC) anode. Outstanding catalytic properties are observed for the direct oxidation of dry fuels in SOFCs, including H2, methane, syngas, methanol, glycerol, and propane. This anode electrocatalyst can be combined with a full density electrolyte based on Gadolinia-doped ceria or with La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) or BaCe0.9Y0.1O3-δ (BYCO) to form a complete perovskite structure-based cell. Moreover, the exsolved perovskite can be used as a coating layer or catalytic pre-layer of a conventional Ni-YSZ anode. Beside the excellent catalytic activity, this material also shows proper durability and tolerance to sulfur poisoning. Research challenges and future directions are discussed. A new approach combining an exsolved perovskite and an NiCu alloy to further enhance the fuel flexibility of the composite catalyst is also considered. In this review, the preparation methods, physicochemical characteristics, and surface properties of exsoluted fine nanoparticles encapsulated on the metal-depleted perovskite, electrochemical properties for the direct oxidation of dry fuels, and related electrooxidation mechanisms are examined and discussed.

5.
Materials (Basel) ; 11(7)2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30002292

ABSTRACT

Co-N-C and Fe-N-C electrocatalysts have been prepared by mixing Fe or Co precursors, ethylene diamine tetra acetic acid (EDTA) as a nitrogen source, and an oxidized carbon. These materials were thermally treated at 800 °C or 1000 °C under nitrogen flow to produce four samples, named CoNC8, CoNC10, FeNC8, and FeNC10. They have been physicochemically characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Direct methanol fuel cell (DMFC) analyses have been carried out to investigate the performance of the nonprecious cathode catalysts, using a low amount of Pt (0.7 mg/cm²) at the anode side. It appears that FeNC8 is the best performing low-cost cathode catalyst in terms of higher oxygen reduction reaction activity and methanol tolerance.

6.
Nat Mater ; 4(5): 366-77, 2005 May.
Article in English | MEDLINE | ID: mdl-15867920

ABSTRACT

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...