Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216508

ABSTRACT

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Subject(s)
Alkenes , Fatty Acids , Fatty Acids/metabolism , Alkenes/chemistry , Decarboxylation , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction
2.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35176760

ABSTRACT

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Subject(s)
Agaricales , Cacao , Solanum lycopersicum , Agaricales/genetics , Cacao/genetics , Cell Wall , Cytokinins , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Sugars , Water
3.
Plant Cell Physiol ; 61(3): 606-615, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31830271

ABSTRACT

Energy cane is a bioenergy crop with an outstanding ability to bud sprouting and increasing yield in ratoon cycles even in marginal lands. Bud fate control is key to biomass production and crop profits due to vegetative propagation and tiller dependency, as well as phenotype plasticity to withstand harsh environmental conditions. During the establishment stage (plant cane cycle), energy cane has a tendency for low root:shoot ratio, which might hamper the ability to cope with stress. Auxin is known to modulate bud sprouting and stimulate rooting in sugarcane. Hence, we treated a slow and a fast bud sprouting energy cane cultivars with auxin or controls (with and without water soaking) for 6 h prior to planting and evaluate plant growth parameters and metabolic profiling using two techniques (gas chromatography with time-of-flight mass spectrometer and nuclear magnetic resonance) to characterize the effect and identify metabolite markers associated with bud inhibition and outgrowth. Auxin inhibited bud burst and promote rooting in setts changing the root:shoot ratio of plantlets. Metabolome allowed the identification of lactate, succinate and aspartate family amino acids as involved in bud fate control through the potential modulation of oxygen and energy status. Investigating environmental and biochemical factors that regulate bud fate can be incremental to other monocot species. Our study provides new insights into bud quiescence and outgrowth in cane hybrids, with the potential to leverage our understanding of yield-related traits, crop establishment and adaptation to global climate change.


Subject(s)
Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Saccharum/growth & development , Saccharum/metabolism , Biomass , Gene Expression Regulation, Plant , Lactic Acid , Metabolome , Phenotype , Plant Shoots/metabolism , Saccharum/genetics , Water
4.
Front Plant Sci ; 9: 857, 2018.
Article in English | MEDLINE | ID: mdl-29988592

ABSTRACT

Metabolic composition is known to exert influence on several important agronomic traits, and metabolomics, which represents the chemical composition in a cell, has long been recognized as a powerful tool for bridging phenotype-genotype interactions. In this work, sixteen truly representative sugarcane Brazilian varieties were selected to explore the metabolic networks in buds and culms, the tissues involved in the vegetative propagation of this species. Due to the fact that bud sprouting is a key trait determining crop establishment in the field, the sprouting potential among the genotypes was evaluated. The use of partial least square discriminant analysis indicated only mild differences on bud outgrowth potential under controlled environmental conditions. However, primary metabolite profiling provided information on the variability of metabolic features even under a narrow genetic background, typical for modern sugarcane cultivars. Metabolite-metabolite correlations within and between tissues revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background.

5.
Biotechnol Biofuels ; 11: 75, 2018.
Article in English | MEDLINE | ID: mdl-29588660

ABSTRACT

BACKGROUND: Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. RESULTS: The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria, Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. CONCLUSION: The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.

6.
Sci Rep ; 5: 12698, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26237540

ABSTRACT

Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Linoleic Acid/metabolism , Neoplasms/metabolism , Oleic Acid/metabolism , Apoptosis Regulatory Proteins , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Ligands , Linoleic Acid/chemistry , Models, Molecular , Monoglycerides/chemistry , Monoglycerides/metabolism , Neoplasms/genetics , Neoplasms/pathology , Oleic Acid/chemistry , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins , Signal Transduction , Stearic Acids/chemistry , Stearic Acids/metabolism , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...