Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 30(7): 1296-302, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19944584

ABSTRACT

In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation.


Subject(s)
Carbon/chemistry , Copper/chemistry , Waste Management , Benzopyrans/analysis , Carbon/analysis , Cities , Copper/analysis , Efficiency , Incineration , Weather
2.
Waste Manag ; 27(10): 1422-7, 2007.
Article in English | MEDLINE | ID: mdl-17531463

ABSTRACT

The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is of concern in many countries and may inhibit the beneficial reuse of this secondary material. Previous studies have focused on the role of dissolved organic carbon (DOC) on the leaching of copper. Recently, a study of the Energy Research Centre of The Netherlands (ECN) showed fulvic acid-type components to exist in the MSWI bottom ash leachates and to be likely responsible for the generally observed enhanced copper leaching. These findings were verified for a MSWI bottom ash (slashed circle 0.1-2 mm) fraction from an incinerator in Flanders. The filtered leachates were subjected to the IHSS fractionation procedure to identify and quantify the fractions of humic acid (HA), fulvic acid (FA) and hydrophilic organic carbon (Hi). The possible complexation of fulvic acid with other heavy metals (e.g., lead) was also investigated. The identified role of fulvic acids in the leaching of copper and other heavy metals can be used in the development of techniques to improve the environmental quality of MSWI bottom ash. Thermal treatment and extraction with a 0.2 M ammonium-citrate solution were optimized to reduce the leaching of copper and other heavy metals. The effect of these techniques on the different fractions of organic matter (HA, FA, Hi) was studied. However, due to the obvious drawbacks of the two techniques, research is focused on finding other (new) techniques to treat MSWI bottom ash. In view of this, particle size-based separation was performed to evaluate its effect on heavy metal leaching and on HA, FA and Hi in MSWI bottom ash leachates.


Subject(s)
Air Pollutants/analysis , Carbon/analysis , Incineration , Metals, Heavy/analysis , Organic Chemicals/analysis , Refuse Disposal/methods , Benzopyrans/analysis , Carbon/chemistry , Cities , Conservation of Natural Resources , Copper/analysis , Copper/chemistry , Humic Substances/analysis , Hydrogen-Ion Concentration , Lead/analysis , Lead/chemistry , Metals, Heavy/chemistry , Organic Chemicals/chemistry
3.
Waste Manag ; 27(10): 1366-75, 2007.
Article in English | MEDLINE | ID: mdl-17049223

ABSTRACT

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.


Subject(s)
Air Pollutants/analysis , Conservation of Natural Resources , Incineration/methods , Industrial Waste , Refuse Disposal/methods , Air Pollutants/chemistry , Cities , Incineration/instrumentation , Iodine/analysis , Iodine/chemistry , Metals/analysis , Metals/chemistry , Organic Chemicals/analysis , Organic Chemicals/chemistry , Particle Size , Refuse Disposal/instrumentation , Time Factors
4.
J Hazard Mater ; 137(1): 235-43, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16540241

ABSTRACT

Leaching of heavy metals from MSWI bottom ash exceeds some of the Flemish limit values for recycling the material as granular construction application. In particular, leaching of Cu, Zn and Pb often exceeds the limit value, with Cu being the most critical. In order to recycle bottom ash, treatment is therefore required. The bottom ash studied was divided on-site into four fractions using a large-scale wet sieving installation: a sludge fraction (Ø 0-0.1mm), a sand fraction (Ø 0.1-2mm) and two gravel fractions (Ø 2-6 and 6-50mm). The two gravel fractions complied with the limit values after 3 months of natural ageing. The sand and sludge fraction did not reach the limit value for Cu. Four weeks of accelerated carbonation resulted in an important decrease of Cu leaching from these two fractions, although the limit value is still exceeded. In view of applying carbonation as one of the treatment methods in an integrated industrial application, two tests were additionally performed. The use of stack gas as carbonating medium was verified by setting up an accelerated carbonation experiment at the incineration plant. Also, the depth of carbonation was measured in a 10 cm thick sample of the sand fraction after different periods of treatment. After 3 months of natural ageing only the upper 4 cm underwent a significant carbonation, while after one week of accelerated carbonation the total sample was carbonated. A model was developed to predict these experimental results.


Subject(s)
Carbon/chemistry , Copper/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Conservation of Natural Resources , Environmental Monitoring , Environmental Pollution , Gases , Hydrogen-Ion Concentration , Incineration , Industrial Waste , Metals, Heavy , Soil Pollutants , Waste Management , Water Pollutants
5.
Waste Manag ; 25(3): 291-300, 2005.
Article in English | MEDLINE | ID: mdl-15823744

ABSTRACT

The 0.1-2 mm fraction of a MSWI-bottom ash cannot be used as granular construction material because leaching of Cu exceeds Flemish limit values. In addition, leaching of Ba, Mo and Sb exceeds informal limit values. Leaching characteristics thus need to be improved. Carbonation was the chosen treatment method and this was performed by placing samples in a CO2 chamber. The CO2 percentage and the temperature of the chamber atmosphere, as well as the initial humidity of the samples, were varied to optimize carbonation parameters. Metal leaching was tested with the EN 12457 extraction test. Carbonation decreased Cu leaching from 3.3 to 1.0 mg/kg, but not yet to below the official limit value of 0.5 mg/kg. Leaching of Mo and Sb remained fairly constant or even increased after carbonation, but their limit values are only informal. Ba leaching decreased to below the informal limit value. Carbonation also caused Cr leaching to increase, in some cases to above the official limit value. Of the tested parameters, a CO2 percentage of 10% and a carbonation temperature of 50 degrees C in the atmosphere, together with ash humidity between 13% and 25% appeared to give the best leaching results. The main carbonation reactions took place within the first 24 h.


Subject(s)
Carbon/chemistry , Conservation of Natural Resources , Incineration , Metals, Heavy/chemistry , Soil Pollutants , Solubility , Water Pollution/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...